Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to Probe Giant Storm Clusters Across Mid-Western States

06.05.2003

From the air and the ground, scientists this spring and summer will examine some of the world’s largest thunderstorm complexes, behemoths that can spread hurricane-force wind and torrential rain for hundreds of miles across the U.S. Midwest. The study, scheduled from May 20 to July 6, should provide the clearest picture to date of how such storms wreak havoc and how forecasters can better predict trails of storm damage.

The Bow Echo and MCV Experiment (BAMEX) is organized by scientists Christopher Davis and Morris Weisman at the National Center for Atmospheric Research (NCAR) in Boulder, Colo. MCV stands for mesoscale convective vortex, a low-pressure center associated with large clusters of storms. The $4 million study is funded primarily by the National Science Foundation (NSF). Collaborators include the National Oceanic and Atmospheric Administration (NOAA), the Naval Research Laboratory, and a dozen colleges and universities (listed below).

The BAMEX study area encompasses most of the Midwest. Field operations, including three aircraft and a forecast center, are based at MidAmerica Airport, just east of St. Louis. Mobile weather labs will traverse the study area. Ron Przybylinski of NOAA’s National Weather Service (NWS) office in St. Louis says forecasters in the region are eager to participate in BAMEX, which is the area’s biggest thunderstorm-related study since the 1970s. "This is a once-in-a-lifetime experience. The more knowledge we have about the evolution of these systems, the better we can predict them."

Unlike many summer storms that develop and decay in an hour or two, mesoscale convective systems-which can produce bow echoes and MCVs-are often large, intense and long lasting. Typically, such a system develops in the warmth of the late afternoon and can last through the night. As it grows, a downdraft of high winds from rain-cooled air can push it into a bow-like configuration, seen as a bow echo on radar. Weak tornadoes may form along the bow or at either end, but the main threat is from straight-line winds that can gust to over 100 miles per hour.

While a typical tornadic thunderstorm might span 12 miles, the long-lived systems studied in BAMEX can stretch more than 90 miles in width and carve paths more than 500 miles long. Such storms can be terrifying, especially late at night when they are most likely to occur across much of the Midwest. On the night of July 26, 1990, a bow echo barreled through Kansas City packing winds of 74 mph. The storm ripped off roofs, downed trees and cut electric power to about 100,000 homes and businesses.

Between January 1995 and July 2000, high winds from U.S. mesoscale convective systems caused over $1.4 billion in damage, 72 deaths and over 1,000 injuries. BAMEX will study how these damaging winds unfold at night, when low-level air usually cools and stabilizes.

After a mesoscale convective system dissipates, its vortex may persist as a focus for new storms the next day, making the vortex a potential forecasting tool. Several days of storms can be triggered as an MCV makes its way across the central and eastern United States. "This characteristic of an MCV is most interesting, as it implies a greater degree of predictability in storm initiation than previously thought possible," says Steve Nelson, program director for mesoscale meteorology at NSF. Heavy rain is a particular threat with these multi-day episodes. One July 1977 MCV that formed in South Dakota ended up producing a catastrophic flood in Johnstown, Pa., killing 78 people.

Although researchers have made progress simulating mesoscale convective systems with computer models, there have been no large scale experiments in recent years aimed at gathering data on these enormous complexes. According to Weisman, "We came to realize that we’d gone about as far as we could with the idealized simulations. We needed to get good data." During BAMEX, three research aircraft will track developing bow echoes and MCVs as they move east across the Midwest from South Dakota, Nebraska, and Kansas to the Ohio Valley. Two of the aircraft have Doppler radar on board. A third will release dropsondes-instrument packages that sample the atmosphere and transmit weather data as they gently descend via parachute.

Ground-based crews will intercept the storms in mobile weather laboratories, deploying weather balloons and using atmospheric profilers and other instruments to sample the storm environment. "It’s going to be unique in that we’ll be all over the place and never know where we’ll be the next night," says NCAR’s Ned Chamberlain, who is overseeing the balloon launches. "We’ll be driving hundreds of miles in a day." To capture the nighttime phase of the mesoscale systems, each day’s activity could extend from four o’clock in the afternoon to two o’clock in the morning.

Forecasters from NWS offices throughout the Midwest will take turns sharing their expertise in St. Louis, examining computer models and diagnosing storm behavior. The data gleaned from BAMEX should enable forecasters to improve their warnings for the high winds produced by bow echoes and the heavy rains triggered by MCVs.

The Joint Office for Science Support (JOSS)-part of the University Corporation for Atmospheric Research, which operates NCAR-has built a Web-based catalog to provide up-to-the-minute field data and serve as an archive for later use. JOSS is also teaming with NCAR and other participants to set up and staff the BAMEX operations center. The project will benefit greatly from the expertise of the NWS forecasters on hand, according to JOSS’s James Moore. "We expect to take advantage of their local knowledge and appreciation for these strong mesoscale systems. They’ll be a real asset," he said.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>