Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore researchers discover uncertainties in satellite data hamper detection of global warming

02.05.2003


Using a new analysis of satellite temperature measurements, scientists from the Lawrence Livermore National Laboratory have determined that uncertainties in satellite data are a significant factor in studies attempting to detect human effects on climate.



Since 1979, Microwave Sounding Units (MSUs) have been flown on 12 different polar-orbiting weather satellites operated by the U.S. National Oceanic and Atmospheric Administration. MSU instruments measure the microwave emissions of oxygen molecules, which are related to atmospheric temperature. By monitoring microwave emissions at different frequencies, it has been possible to ’back out’ information on temperature changes in various layers of the atmosphere.

Until recently, only one group -- from the University of Alabama at Huntsville -- had analyzed the raw MSU data. This analysis is complicated by such factors as the gradual decay and drift of satellite orbits (which affect the time of day at which MSU instruments measure atmospheric temperatures) and by problems related to the calibration of MSUs.


The pioneering Huntsville analysis of the MSU data suggested that the troposphere (the lowest layer of the atmosphere) had undergone little or no overall warming since 1979. Some have used this finding to question both the reality of human-induced global warming and the reliability of computer climate models, which predict that the troposphere should have warmed in response to increases in greenhouse gases. The Huntsville results are also at odds with thermometer measurements indicating pronounced warming of the Earth’s surface during the satellite era.

Now a second group has conducted an independent analysis of the same raw MSU data used by the University of Alabama scientists. This group, led by Carl Mears, Matthias Schabel, and Frank Wentz of Remote Sensing Systems in

Santa Rosa, uses different methods to correct for satellite orbital drift and MSU calibration problems. They find that the troposphere probably warmed by roughly 0.1 degrees Celsius (0.18 degrees Fahrenheit) per decade from 1979 to 2001. This amounts to a total rise in tropospheric temperature of 0.4 degrees Fahrenheit over this period.

The implications of these uncertainties for attempts to detect human effects on climate are explored by Livermore scientists Benjamin Santer, Karl Taylor, James Boyle and Charles Doutriaux, along with researchers from Remote Sensing Systems, the National Center for Atmospheric Research, Lawrence Berkeley National Laboratory and the University of Birmingham in England. Their findings are reported in the May 1 online edition of Science Express in a paper titled, "Influence of Satellite Data Uncertainties on the Detection of Externally-Forced Climate Change."

The Lab scientists and their colleagues use results from a state-of-the-art computer climate model that was run with estimates of historical changes in greenhouse gases, sulfate aerosols, ozone, volcanic dust and the sun’s energy output. These experiments were performed at the National Center for Atmospheric Research in Boulder, Colo., and the Department of Energy’s National Energy Research Scientific Computing Center in Berkeley, Calif. The model runs yield detailed patterns (or ’fingerprints’) of tropospheric temperature change. These fingerprints are identifiable in the Santa Rosa satellite data showing a warming troposphere, but not in the University of Alabama MSU records. Model output from these and other simulations are freely distributed to the research community (http://www.nersc.gov/projects/gcm_data).

"In the last 24 years, satellites have helped us to observe the climate of our planet more intensively and systematically than at any other time in Earth’s history," said Santer, lead author of the paper. "Yet even over the satellite era, there are still large uncertainties in our estimates of how tropospheric temperatures have changed. It’s important to take these uncertainties into account in evaluating the reliability of climate models. We find that model/data agreement, like beauty, depends on one’s observational perspective. Our detection results point toward a real need to reduce current levels of uncertainty in satellite temperature measurements."

The positive detection of model tropospheric temperature ’fingerprints’ in the Santa Rosa satellite data is consistent with earlier research that has found human-induced signals in such climate variables as surface temperature, ocean heat content, tropopause height and Northern Hemisphere sea ice cover.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>