Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nasa Discovers aSoggy Secret of El Niño

02.05.2003


NASA-funded researchers have discovered El Niño’s soggy secret. When scientists identified rain patterns in the Pacific Ocean, they discovered the secret of how El Niño moves rainfall around the globe during the life of these periodic climate events when waters warm in the eastern Pacific Ocean.


EL NINO’S PEAK - RAIN IN RED

Areas that are wet (red) or dry (blue) during the wintertime (December-January-February) during the peak of El Niño. CREDIT: NASA


EL NINO POST-PEAK - RED AREAS BECOME WET

Areas that go from dry to wet (red) or wet to dry (blue) from the summer before the El Niño peak to the summer after the El Niño peak. This is the traditional view of El Niño evolution. CREDIT: NASA



The results may help scientists improve rainfall forecasts around the globe during the life of an El Niño, and may also offer new insights into how an El Niño develops.

The findings were highlighted in a paper authored by Scott Curtis of the University of Maryland - Baltimore County, Baltimore, Md., and Bob Adler, of Goddard Space Flight Center, Greenbelt, Md. The study appeared in a recent issue of the American Geophysical Union’s Journal of Geophysical Research.


In an effort to predict and understand the effects of El Niño, most scientists focus on seasonal changes in rainfall patterns, like where and when rain falls during winter. This study takes a different approach by first looking at the evolution of rainfall over the geographic area of the Pacific, which has the power to change the global winds and re-direct rainfall patterns around the world.

Curtis and Adler found a significant pattern of alternating rainfall for El Niños since 1979, with wetness in eastern China, dryness over Indonesia and wetness in the south Indian Ocean and Australia.

They noted that this pattern swings eastward as the El Niño weakens. As El Niño weakens, rainfall patterns alternate from one area to another. In the eastern Pacific, there is wetness on the Equator, dryness off the coast of Mexico, and wetness off the coast of California. The traditional view of El Niño based on seasonal rainfall patterns obscures these relationships.

El Niño events, like individual thunderstorms, differ in intensity, lifespan, rainfall, and other characteristics, making them difficult to quantify. So, Curtis and Adler had to set parameters to define El Niños based on rainfall that occurs in the equatorial Pacific. They looked at the periods before rainfall began, when the El Niño started, peaked, faded, and after it ended. They also identified areas around the globe that were consistently wet or dry during each El Niño evolution stage.

Curtis and Adler utilized global rainfall datasets developed from satellites and rain gauges from all over the world, which are part of the Global Precipitation Climatology Project under the Global Energy and Water Cycle Experiment (GEWEX), a project heavily supported by NASA.

Data from the Tropical Rainfall Measuring Mission (TRMM) satellite, used in this study, will also help ensure the accuracy of satellites used by the National Oceanic and Atmospheric Administration (NOAA) and Department of Defense. TRMM is a joint NASA/Japanese Space Agency mission to study tropical rainfall and its implications for climate. Each day, the TRMM spacecraft observes the Earth’s equatorial and tropical regions.

In the future this kind of study will help pinpoint where an El Niño will generate floods, droughts, and changes in rainfallaround the globe. This information will be extremely useful once NASA’s Global Precipitation Measurement mission, currently in formulation launches sometime after 2007.

This NASA funded work addresses a number of NASA’s Earth Science Enterprise research strategies, including how variations in local weather, precipitation and water resources are related to global climate variation, in this case caused by El Niño. By recognizing global rainfall patterns associated with El Niño and by better understanding the impacts of El Niño, researchers may be able to better understand and predict these climate variations.

Rob Gutro | Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0428soggynino.html

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>