Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nasa Discovers aSoggy Secret of El Niño

02.05.2003


NASA-funded researchers have discovered El Niño’s soggy secret. When scientists identified rain patterns in the Pacific Ocean, they discovered the secret of how El Niño moves rainfall around the globe during the life of these periodic climate events when waters warm in the eastern Pacific Ocean.


EL NINO’S PEAK - RAIN IN RED

Areas that are wet (red) or dry (blue) during the wintertime (December-January-February) during the peak of El Niño. CREDIT: NASA


EL NINO POST-PEAK - RED AREAS BECOME WET

Areas that go from dry to wet (red) or wet to dry (blue) from the summer before the El Niño peak to the summer after the El Niño peak. This is the traditional view of El Niño evolution. CREDIT: NASA



The results may help scientists improve rainfall forecasts around the globe during the life of an El Niño, and may also offer new insights into how an El Niño develops.

The findings were highlighted in a paper authored by Scott Curtis of the University of Maryland - Baltimore County, Baltimore, Md., and Bob Adler, of Goddard Space Flight Center, Greenbelt, Md. The study appeared in a recent issue of the American Geophysical Union’s Journal of Geophysical Research.


In an effort to predict and understand the effects of El Niño, most scientists focus on seasonal changes in rainfall patterns, like where and when rain falls during winter. This study takes a different approach by first looking at the evolution of rainfall over the geographic area of the Pacific, which has the power to change the global winds and re-direct rainfall patterns around the world.

Curtis and Adler found a significant pattern of alternating rainfall for El Niños since 1979, with wetness in eastern China, dryness over Indonesia and wetness in the south Indian Ocean and Australia.

They noted that this pattern swings eastward as the El Niño weakens. As El Niño weakens, rainfall patterns alternate from one area to another. In the eastern Pacific, there is wetness on the Equator, dryness off the coast of Mexico, and wetness off the coast of California. The traditional view of El Niño based on seasonal rainfall patterns obscures these relationships.

El Niño events, like individual thunderstorms, differ in intensity, lifespan, rainfall, and other characteristics, making them difficult to quantify. So, Curtis and Adler had to set parameters to define El Niños based on rainfall that occurs in the equatorial Pacific. They looked at the periods before rainfall began, when the El Niño started, peaked, faded, and after it ended. They also identified areas around the globe that were consistently wet or dry during each El Niño evolution stage.

Curtis and Adler utilized global rainfall datasets developed from satellites and rain gauges from all over the world, which are part of the Global Precipitation Climatology Project under the Global Energy and Water Cycle Experiment (GEWEX), a project heavily supported by NASA.

Data from the Tropical Rainfall Measuring Mission (TRMM) satellite, used in this study, will also help ensure the accuracy of satellites used by the National Oceanic and Atmospheric Administration (NOAA) and Department of Defense. TRMM is a joint NASA/Japanese Space Agency mission to study tropical rainfall and its implications for climate. Each day, the TRMM spacecraft observes the Earth’s equatorial and tropical regions.

In the future this kind of study will help pinpoint where an El Niño will generate floods, droughts, and changes in rainfallaround the globe. This information will be extremely useful once NASA’s Global Precipitation Measurement mission, currently in formulation launches sometime after 2007.

This NASA funded work addresses a number of NASA’s Earth Science Enterprise research strategies, including how variations in local weather, precipitation and water resources are related to global climate variation, in this case caused by El Niño. By recognizing global rainfall patterns associated with El Niño and by better understanding the impacts of El Niño, researchers may be able to better understand and predict these climate variations.

Rob Gutro | Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0428soggynino.html

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>