Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Syracuse University geologists raise questions about controversial theory of species survival

28.04.2003


A recent study by a team of Syracuse University geologists has punched holes in a relatively new theory of species evolution called coordinated stasis; the theories involved are based on findings from fossil-bearing rocks that underlie Central New York. The SU study was published in “Geology,” the premier journal of the Geological Society of America.


First proposed in 1995 by Carl Brett of the University of Cincinnati and Gordon Baird of the State University of New York at Fredonia, coordinated stasis attempts to describe the emergence and disappearance of species across geologic time by suggesting that species living together in the same environment go through long periods of stability—some six million years—and then undergo a rapid, almost complete turnover, during which old species disappear and new ones emerge. Until 1995, most researchers believed that species emerged and disappeared independent of each other throughout time.

“Our study suggests that there may be more variability in species composition through time than predicted by coordinated stasis,” says Linda Ivany, one of the co-authors of the SU study. “It will be the blueprint study against which other researchers will present their data sets to determine whether coordinated stasis is present or not.”

The SU study resulted from research that lead author Nicole Bonuso G’01 conducted for her master’s thesis project in the Department of Earth Sciences and an analysis of some 20 years of fossil data—38,000 specimens—compiled by Bonuso’s faculty advisors and co-authors Cathryn Newton, dean of The College of Arts and Sciences, and Prof. James C. Brower. The data were collected from the Central New York Middle Devonian Hamilton Group, the original test case for coordinated stasis, which is characterized by beautifully preserved and richly diverse fossils that date back more than six million years.



Unlike previous studies, which were based only on the presence or absence of species, Bonuso, currently a doctoral student at the University of Southern California, Los Angeles, looked at “proportional abundance data,” meaning that she looked at all of the species that were present and at how abundant they were across a six million year span. “When the first results started coming in, I got very excited,” Bonuso says. “Coordinated stasis did not hold up to our rigorous statistical analysis within the area we tested. That doesn’t mean coordinated stasis never occurs or doesn’t occur at other times. More research is needed.”

Adds Ivany: “We found that while the most abundant species persisted across the span of time as would be predicted by coordinated stasis, the less common species showed more variability. And relatively speaking, the abundant species represented only a few of all the species that were represented in the data set. The findings suggest that coordinated stasis holds for the most abundant species but not for the less common ones, which seem to come and go through time independent of each other.”

Ivany says the point of the study was not so much to prove or disprove coordinated stasis, but rather to compare the results of a high-resolution study using abundance data from the Syracuse area to the original formulation of coordinated stasis as presented by Brett and Baird. In addition, the study explicitly identified a consistent, statistical method to determine whether coordinated stasis is present in the fossil record in a given area. “If coordinated stasis is showing up with a reasonable degree of frequency in the history of life, we then need to look at what it is telling us about the relationships among evolution, ecology and environmental change,” she says.

The study, published as the lead article in the December 2002 issue of “Geology,” was the second published work to come out of Bonuso’s master’s thesis. The first article, published a year ago in “Palaeogeography, Palaeoclimatology, Palaeoecology” was based on an analysis of fossils she collected from the uppermost layer of the Hamilton Group, which completed Newton’s and Brower’s 20-year effort to collect species data from the entire geological unit.

One of the goals of the first study, which Bonuso also co-authored with Newton, Brower and Ivany, was to find an appropriate statistical method to test the hypothesis of coordinated stasis using only the data from the upper-most layer. The methodology developed for the first study was expanded to analyze the data previously collected by Newton and Brower, which led to the “Geology” article.

“If it were not for the excellent mentoring from all my advisors throughout the course of the project, this important research would not have been accomplished,” Bonuso says. “This was Cathy Newton’s original idea wrapped with Jim Brower’s methodology, and they let me in on it. I just picked up where they left off.”

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu/

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>