Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB professor says volcanic eruptions in Costa Rica ’inevitable’

24.04.2003


It might be 500,000 years or five years, but the Central Valley of Costa Rica will definitely experience major volcanic activity again, according to Phillip B. Gans, professor of geology at the University of California, Santa Barbara. He presented a study of volcanic rocks of Costa Rica in his recent talk at the annual meeting of the Geological Society of America.



"The Costa Ricans were not around for the last big one, but it’s inevitable," said Gans. "Another pyroclastic flow like the last one big one in Costa Rica will make the Mount St. Helens eruption look like nothing." Pyroclastic flows are high-speed avalanches of hot ash, rock fragments, and gas that roar down the sides of volcanoes during explosive eruptions or when the steep edge of a dome breaks apart and collapses. These pyroclastic flows, which can reach 1000 degrees Fahrenheit and move at 100-150 mph, are capable of knocking down and burning everything in their paths.

Volcanoes are unpredictable beasts, said Gans. However, the eruption of Mount St. Helens gave us a four-month warning. Due to careful monitoring of the small earthquakes inside the volcano, and the bulging of the surface of the volcano, the residents of the area were prepared. (Although 25 people died in this eruption, it is still considered a success story in terms of evacuation.)


"We don’t know if we will get a similar warning for a very large eruption like the ones that have occurred prehistorically in the Central Valley of Costa Rica," said Gans. The Central Plateau of Costa Rica is home to more than half of Costa Rica’s population and is flanked by several large volcanoes, some of which are still active.

Gans came upon his work in Costa Rica when a colleague asked him to determine the ages of some volcanic rocks from Costa Rica. He found that very little was known about the volcanic history of Costa Rica, and so he engaged in a several year study of volcanic rocks, collecting and studying 450 samples from the whole country.

Gans has a laboratory that is known for its precision in dating volcanic rocks. He was able to put together a detailed history of volcanic activity as well as a geologic map of the country. To date volcanic rocks, he used the natural radioactive decay of potassium as a clock to determine the age. This radiometric age is a measure of how long since that material formed, which gives the age of the eruption. Using this method, Gans can measure a rock that is 10 million years old to a tenth of a percent accuracy.

The volcanoes in Costa Rica are formed by subduction. That is, there is an oceanic tectonic plate diving under the country which then causes melting in the deeper parts of the Earth, and these melts (or magmas) then rise and erupt to form volcanoes. It is similar to a process occurring in the Northwest United States, where a Pacific Ocean plate is diving beneath Washington and Oregon and causing volcanism in the Cascades volcanoes: Mt. Ranier, Mt. Hood, Mt. Shasta, and Mt. Jefferson.

Gans determined that subduction-related volcanism in Costa Rica has been occurring for at least 24 million years. He discovered that major pyroclastic eruptions have occurred many times over the past million years in the vicinity of the Central Valley of Costa Rica, with the most recent about 324,000 years ago. The cities and towns of the Central Valley, including San Jose, the capital, are built on the vast pyroclastic flow deposit that was produced by that eruption. If the same eruption were to occur today, within a matter of minutes to hours the entire Central Valley and all of the major cities of Costa Rica would be overrun by a hot pyroclastic flow of ash and pumice that would end up covering the entire area with a new pyroclastic deposit up to several hundred feet thick.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>