Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite measures Earth’s carbon metabolism

24.04.2003


In honor of the Earth Day celebration, NASA scientists unveiled the first consistent and continuous global measurements of Earth’s "metabolism." Data from the Terra and Aqua satellites are helping scientists frequently update maps of the rate at which plant life on Earth is absorbing carbon out of the atmosphere.



Combining space-based measurements of a range of plant properties collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) with a suite of other satellite and surface-based measurements, NASA scientists produce composite maps of our world’s "net primary production" every 8 days. This new measurement is called net production because it indicates how much carbon dioxide is taken in by vegetation during photosynthesis minus how much is given off during respiration. Scientists expect this global measure of the biological productivity of plants to yield new insights into how the Earth’s carbon cycle works, a critical step toward solving the climate change puzzle.

The rate of carbon fixation through photosynthesis is a basic property of life on planet Earth. It is the basis for capturing and storing the energy that fuels our world’s living systems and forms the foundation of the food webs. The oxygen we breathe is a byproduct of this photosynthesis. According to its creators, these new net primary productivity maps provide a fascinating new insight into the intimate connection between the living world and the physical world.


"We are literally watching the global garden grow," says Steve Running, MODIS Science Team member and director of the Numerical Terradynamic Simulation Group at the University of Montana. "We now have a regular, consistent, calibrated and near-real-time measure of a major component of the global carbon cycle for the first time. This measure can also be the basis for monitoring the expansion of deserts, the effects of droughts, and any impacts climate change may have on vegetation growth, health, and seasonality."

On land, notes Running, photosynthesis is the foundation for agricultural crop production, rangeland grazing capacity and forest growth. "We also anticipate that our new productivity maps should help to significantly improve analysis of global crop commodities."

The new maps show that the highest mid-summer productivity rates are found at temperate latitudes with mild climates and not at tropical latitudes, as some might have expected. However, tropical forests are more productive over a full year because of their longer growing season. Viewing the global maps sequentially in a 2-year movie reveals some fantastic seasonal cycles of plant growth, especially at high latitudes across North America, Europe, and Asia. The movie also reveals the almost immediate response of land plants to changing daily weather patterns.

However, plant life in the ocean is somewhat more buffered and therefore not as directly driven by weather patterns, states Wayne Esaias, biological oceanographer at NASA’s Goddard Space Flight Center. The growth of microscopic marine plants (phytoplankton) in the ocean responds more to seasonal changes-currents, temperature, and sunlight. So, whereas certain areas on land will swing abruptly from very low to very high rates of photosynthetic activity, biological productivity in the ocean is ongoing steadily and is spread over much wider areas.

"It doesn’t surprise Earth scientists, but the public might be surprised to learn that there is so much photosynthesis in the oceans," observes Esaias. "When you average the productivity rates over the whole world, the ocean is roughly equal to the land."

Esaias is examining how plant productivity rates in the ocean vary in response to changes in the ocean’s current patterns. In particular, he says, these new primary productivity maps will help fisheries scientists understand why there are good catches some years and poor catches in others.

For the last two decades, using data from earlier satellite sensors, scientists have been able to map global concentrations of chlorophyll, the green pigment marine and land plants use for photosynthesis. But it was still a leap for scientists to estimate how much carbon was converted to organic material by plants-a measure now routinely provided by the net primary productivity maps.

The new MODIS maps mark a major milestone in the careers of both Running and Esaias-a milestone they have been working toward for more than 20 years. "As Earth systems science began in the 1980s, ecology was way behind the atmosphere and oceans disciplines in achieving a global perspective because our training was on single organisms (i.e., dissecting frogs and counting dandelions), so we had no global-scale theory or measurements," states Running. "But this new measurement attests that ecology is now catching up in global science."

Esaias adds that this is just the first cut and there is much work left to do to refine their maps. "The world is a big place and we are only just beginning to fully understand and validate what we see in our data around the globe and over time. We know we can make improvements in some areas, but it is good to now have the global context to pull together research that is being done locally in various regions around the world."

Launched in December 1999 and May 2002, Terra and Aqua are the flagships of the Earth Observing System series of satellites and a central part of NASA’s Earth Science Enterprise. The mission of the Earth Science Enterprise is to help us understand and protect our home planet.

David Herring | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>