Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite measures Earth’s carbon metabolism

24.04.2003


In honor of the Earth Day celebration, NASA scientists unveiled the first consistent and continuous global measurements of Earth’s "metabolism." Data from the Terra and Aqua satellites are helping scientists frequently update maps of the rate at which plant life on Earth is absorbing carbon out of the atmosphere.



Combining space-based measurements of a range of plant properties collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) with a suite of other satellite and surface-based measurements, NASA scientists produce composite maps of our world’s "net primary production" every 8 days. This new measurement is called net production because it indicates how much carbon dioxide is taken in by vegetation during photosynthesis minus how much is given off during respiration. Scientists expect this global measure of the biological productivity of plants to yield new insights into how the Earth’s carbon cycle works, a critical step toward solving the climate change puzzle.

The rate of carbon fixation through photosynthesis is a basic property of life on planet Earth. It is the basis for capturing and storing the energy that fuels our world’s living systems and forms the foundation of the food webs. The oxygen we breathe is a byproduct of this photosynthesis. According to its creators, these new net primary productivity maps provide a fascinating new insight into the intimate connection between the living world and the physical world.


"We are literally watching the global garden grow," says Steve Running, MODIS Science Team member and director of the Numerical Terradynamic Simulation Group at the University of Montana. "We now have a regular, consistent, calibrated and near-real-time measure of a major component of the global carbon cycle for the first time. This measure can also be the basis for monitoring the expansion of deserts, the effects of droughts, and any impacts climate change may have on vegetation growth, health, and seasonality."

On land, notes Running, photosynthesis is the foundation for agricultural crop production, rangeland grazing capacity and forest growth. "We also anticipate that our new productivity maps should help to significantly improve analysis of global crop commodities."

The new maps show that the highest mid-summer productivity rates are found at temperate latitudes with mild climates and not at tropical latitudes, as some might have expected. However, tropical forests are more productive over a full year because of their longer growing season. Viewing the global maps sequentially in a 2-year movie reveals some fantastic seasonal cycles of plant growth, especially at high latitudes across North America, Europe, and Asia. The movie also reveals the almost immediate response of land plants to changing daily weather patterns.

However, plant life in the ocean is somewhat more buffered and therefore not as directly driven by weather patterns, states Wayne Esaias, biological oceanographer at NASA’s Goddard Space Flight Center. The growth of microscopic marine plants (phytoplankton) in the ocean responds more to seasonal changes-currents, temperature, and sunlight. So, whereas certain areas on land will swing abruptly from very low to very high rates of photosynthetic activity, biological productivity in the ocean is ongoing steadily and is spread over much wider areas.

"It doesn’t surprise Earth scientists, but the public might be surprised to learn that there is so much photosynthesis in the oceans," observes Esaias. "When you average the productivity rates over the whole world, the ocean is roughly equal to the land."

Esaias is examining how plant productivity rates in the ocean vary in response to changes in the ocean’s current patterns. In particular, he says, these new primary productivity maps will help fisheries scientists understand why there are good catches some years and poor catches in others.

For the last two decades, using data from earlier satellite sensors, scientists have been able to map global concentrations of chlorophyll, the green pigment marine and land plants use for photosynthesis. But it was still a leap for scientists to estimate how much carbon was converted to organic material by plants-a measure now routinely provided by the net primary productivity maps.

The new MODIS maps mark a major milestone in the careers of both Running and Esaias-a milestone they have been working toward for more than 20 years. "As Earth systems science began in the 1980s, ecology was way behind the atmosphere and oceans disciplines in achieving a global perspective because our training was on single organisms (i.e., dissecting frogs and counting dandelions), so we had no global-scale theory or measurements," states Running. "But this new measurement attests that ecology is now catching up in global science."

Esaias adds that this is just the first cut and there is much work left to do to refine their maps. "The world is a big place and we are only just beginning to fully understand and validate what we see in our data around the globe and over time. We know we can make improvements in some areas, but it is good to now have the global context to pull together research that is being done locally in various regions around the world."

Launched in December 1999 and May 2002, Terra and Aqua are the flagships of the Earth Observing System series of satellites and a central part of NASA’s Earth Science Enterprise. The mission of the Earth Science Enterprise is to help us understand and protect our home planet.

David Herring | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>