Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists returning to field of eerie thermal spires

17.04.2003


The bizarre hydrothermal vent field discovered a little more than two years ago surprised scientists not only with vents that are the tallest ever seen – the one that’s 18 stories dwarfs most vents at other sites by at least 100 feet – but also because the fluids forming these vents are heated by seawater reacting with million-year-old mantle rocks, not by young volcanism.


A 3-foot-wide ledge or flange made of carbonate juts out from the side of a 160-foot chimney in the Lost City hydrothermal vent field. The chimney and flange are made of minerals dissolved in 160 F fluids that flow out of the seafloor and then precipitate when the fluids hit the icy cold seawater.
Photo credit: University of Washington



The remarkable Lost City hydrothermal vent field, so named partly because it sits on a seafloor mountain named the Atlantis Massif, was discovered in the middle of the Atlantic Ocean about 1,500 miles off the East Coast of the United States during an expedition that wasn’t even looking for hydrothermal vents.

Now the two scientists who were the first to travel in a submersible to the field after its serendipitous discovery Dec. 4, 2000, are leading a National Science Foundation-funded expedition to map and farther investigate the field. A Web site launched today at http://www.lostcity.washington.edu/ will follow the 32-day expedition that starts April 21.


The field is unlike any seen before, according to chief scientist Deborah Kelley, a University of Washington associate professor of oceanography, and co-chief scientist Jeff Karson, a Duke University professor of earth and ocean sciences. Both have visited fields of black-smoker hydrothermal vents that scientists have been studying since the 1970s.

Lost City is distinctive in part because the mighty 180-foot vent at the site, which scientists named Poseidon, is so much larger than previously studied black-smoker vents that mostly reach 80 feet or less. The tallest black-smoker chimney ever seen was a 135-foot vent off the coast of Washington (which toppled in recent years).

In contrast to black-smoker vents that are a darkly mottled mix of sulfide minerals, Lost City vents are nearly 100 percent carbonate, the same material as limestone in caves, and range in color from a beautiful clean white to cream or gray.

The differences are because hydrothermal venting – a process in which water circulates into the seafloor, gaining heat and chemicals until there is enough heat for the fluids to vent back into the ocean – doesn’t appear connected to volcanic activity and magma chambers. This is unlike most systems at mid-ocean ridge spreading centers. That’s where very young seafloor is created – often dramatically during volcanic eruptions – and vented water can be as hot as 700 F.

Lost City is nine miles from the nearest spreading center and sits on 1.5 million-year-old crust. Heat generated by chemical changes in the rocks appears to drive venting: seawater permeates deeply into the fractured surface of the mantle rocks where it transforms the mineral olivine into a new mineral, serpentine. The heat is not as great as that at volcanically active sites but is enough to power hydrothermal circulation and produce vent fluids of 105 to 170 F.

Lost City vent fluids support a community of microorganisms believed to live off the gases methane and hydrogen, both byproducts of serpentinization. This leads Kelley, Karson and others to speculate that life on this planet may have started in just such an environment, particularly since so much more mantle rock was exposed to seawater early in Earth’s history. And the same could be happening on other worlds.

The project includes scientists, engineers and students from the University of Washington, Duke University, Woods Hole Oceanographic Institution, U.S. National Oceanic and Atmospheric Administration, Switzerland’s Institute for Mineralogy and Petrology and Japan’s National Institute of Advanced Industrial Science and Technology.

The team leaves Barbados April 21 on board the Atlantis, operated by Woods Hole. It takes five days to reach the ocean above Lost City where researchers will use the submersible Alvin and an unmanned Autonomous Benthic Explorer.

Among those on the expedition will be lead pilot Pat Hickey, who took Kelley and Karson in the Alvin to see Lost City the day after it was first spotted during routine surveying using an unmanned, remotely operated vehicle. There was time for just a single dive before the expedition ended and bad weather began so scientists can only say the field is 300 feet by perhaps 1,700 feet and has roughly 30 vent structures. Since then the field has been visited by a U.S. film crew, which conducted no science, and a Russian group, which did limited sampling.

Work this month and next includes studying the waters above the field looking for clues to help find other Lost City fields and visiting a neighboring mountain that looks promising. Researchers also will grow and examine microorganisms recovered from the chimneys.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/
http://www.lostcity.washington.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>