Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New species of earliest-known salamanders found in China

27.03.2003


A 161 million-year-old Mongolian fossil not only reveals a new species of salamanders, but also provides proof that much of the evolution of salamanders occurred in Asia.



For more than three years, scientists from the University of Chicago and Peking University in Beijing have been collecting thousands of salamander fossils, many of which preserve the entire skeleton and impressions of soft tissues, from seven excavation sites in Mongolia and China. Prior to the discovery in 1996 of the Chinese sites, scientists had complete salamander fossils dating back only to the Tertiary period, which began 65 million years ago.

“It’s remarkable to have the earliest-known salamanders with so much diversity, so many specimens and such high-quality preservation,” said Neil Shubin, Ph.D., professor and chairman of organismal biology and anatomy at the University of Chicago and lead author in the study. “Usually when you find the earliest-known animal, you only have one representative. But we have thousands. It’s a real opportunity to look at how salamanders have evolved.”


To date, the scientists have discovered five new species of salamanders from the Asian sites – one of which, Chunerpeton tianyiensis, is described in the March 27, 2003, issue of the journal Nature.

According to the paper, the newly found species closely resembles the North American hellbender, a common salamander currently found in Asia, as well as in the Allegheny Mountains near Pittsburgh, Penn.

Most of the variations in the fossil animal are due to small changes in the shape of the bones in the front of the skull, in the features of the fingers and toes, and in variations of the ribs. One unique feature is that it bears “unicapitate” ribs, meaning the rib has only one facet, or head, where it connects to the vertebra. Most modern salamanders have two-headed ribs.

A volcanic eruption in northern China during the Middle Jurassic period (165 to 180 million years ago) provided key material for the origin of the salamander -- 100 million years earlier than the oldest known salamander fossil. The eruption wiped out whole communities of the earliest-known salamanders but left thousands of beautifully preserved fossils.

According to Shubin, the presence of Chunerpeton (a member of the Cryptobranchae family) in the Middle Jurassic period of China implies that the split between the two oldest families – hynobiids and cryptobranchids – occurred in Asia.

“The new cryptobranchid shows extraordinary morphological similarity to its living relatives,” noted the study authors. “Indeed, exant cryptobranchid salamanders can be regarded as living fossils whose structures have remained little changed for more than 160 million years.”

“What this tells us,” Shubin said, “is that the major families of salamanders are probably relatively ancient. The distribution of the families today is a relic of what happened in the distant past.

“The diversity of species in this find, combined with molecular data and study of characteristics from living salamanders, leads to the inescapable conclusion that almost all the major groups of salamanders evolved very early,” he said, “And not much has happened since.”

Soon after excavation began, it became apparent to Shubin and co-author Gao Ke-Qin, professor of earth and space science at Peking University, that these specimens provided compelling evidence that the salamander originated in Asia, which they detailed in a paper published two years ago in Nature.

Salamanders, one of the three major groups of modern amphibians, are important to understanding fundamental questions in evolution. Their wide geographic distribution, highly variable species (approximately 150) and ecological diversification have served as a model system for assessing developmental, anatomical and biogeographic evolution.

Complete fossils, some including rare soft tissue impressions, offer a wealth of new information of the salamander’s origin, life cycle and evolutionary strategies.

“We were able to see all the stages of the life cycle, larvae and adults, as well as a range of different kinds of animals,” Shubin said. “The exquisite condition of the fossils offers clues to evolutionary strategies -- larval details such as gills in adult animals, for example.”

In the paper, the researchers feature one such well-preserved fossil that reveals the animal’s eye, folds in the tail and a stomach bulging with clams. “This is very unusual, to get that kind of detail,” Shubin said. The fossil also shows that the vertebral column and the limbs are not yet formed, and that the animal’s internal gills remain.

Salamanders are living fossils -- they have retained the same body plan for millions of years. “Whether you look at a salamander you find under a rock in the local forest preserve or in a rock in China dating back 165 million years, they look alike. In fact, they look alike in great detail – the bones in their wrists are the same, the way their skulls are formed – intricate details are the same,” he said.

At the same time, their limbs and heads have served as a model of how variation arises during evolution. One of the great puzzles of evolution is how different types of salamanders evolved the same features independently. This phenomenon is called parallel evolution. These fossils may provide answers to this old question.

Salamanders are disappearing worldwide today despite their longevity over evolutionary time. “Here is an animal that has been around for at least 165 million years,” Shubin said. “They made it through several major extinction events. They made it through the event that killed the dinosaurs. Yet today, along with other amphibians, salamanders are disappearing and we really don’t know why.”

Fieldwork was supported by the National Geographic Society, and a recent grant from the National Science Foundation supports the lab analyses of the fossils.

The researchers plan to return to the sites this summer.

Catherine Gianaro | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Earth Sciences:

nachricht Small- and mid-sized cities particularly vulnerable
29.09.2016 | Universität Stuttgart

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>