Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study finds increasing solar trend that can change climate

21.03.2003


Since the late 1970s, the amount of solar radiation the sun emits, during times of quiet sunspot activity, has increased by nearly .05 percent per decade, according to a NASA funded study.



"This trend is important because, if sustained over many decades, it could cause significant climate change," said Richard Willson, a researcher affiliated with NASA’s Goddard Institute for Space Studies and Columbia University’s Earth Institute, New York. He is the lead author of the study recently published in Geophysical Research Letters.

"Historical records of solar activity indicate that solar radiation has been increasing since the late 19th century. If a trend, comparable to the one found in this study, persisted throughout the 20th century, it would have provided a significant component of the global warming the Intergovernmental Panel on Climate Change reports to have occurred over the past 100 years," he said.


NASA’s Earth Science Enterprise funded this research as part of its mission to understand and protect our home planet by studying the primary causes of climate variability, including trends in solar radiation that may be a factor in global climate change.

The solar cycle occurs approximately every 11 years when the sun undergoes a period of increased magnetic and sunspot activity called the "solar maximum," followed by a quiet period called the "solar minimum."

Although the inferred increase of solar irradiance in 24 years, about 0.1 percent, is not enough to cause notable climate change, the trend would be important if maintained for a century or more. Satellite observations of total solar irradiance have obtained a long enough record (over 24 years) to begin looking for this effect.

Total Solar Irradiance (TSI) is the radiant energy received by the Earth from the sun, over all wavelengths, outside the atmosphere. TSI interaction with the Earth’s atmosphere, oceans and landmasses is the biggest factor determining our climate. To put it into perspective, decreases in TSI of 0.2 percent occur during the weeklong passage of large sunspot groups across our side of the sun. These changes are relatively insignificant compared to the sun’s total output of energy, yet equivalent to all the energy that mankind uses in a year. According to Willson, small variations, like the one found in this study, if sustained over many decades, could have significant climate effects.

In order to investigate the possibility of a solar trend, Willson needed to put together a long-term dataset of the sun’s total output. Six overlapping satellite experiments have monitored TSI since late 1978. The first record came from the National Oceanic and Atmospheric Administration’s (NOAA) Nimbus7 Earth Radiation Budget (ERB) experiment (1978 - 1993). Other records came from NASA’s Active Cavity Radiometer Irradiance Monitors: ACRIM1 on the Solar Maximum Mission (1980 - 1989), ACRIM2 on the Upper Atmosphere Research Satellite (1991 - 2001) and ACRIM3 on the ACRIMSAT satellite (2000 to present). Also, NASA launched its own Earth Radiation Budget Experiment on its Earth Radiation Budget Satellite (ERBS) in 1984. The European Space Agency’s (ESA) SOHO/VIRGO experiment also provided an independent data set (1996 to 1998).

In this study, Willson, who is also Principal Investigator of NASA’s ACRIM experiments, compiled a TSI record of over 24 years by carefully piecing together the overlapping records. In order to construct a long-term dataset, he needed to bridge a two-year gap (1989 to 1991) between ACRIM1 and ACRIM2. Both the Nimbus7/ERB and ERBS measurements overlapped the ACRIM ’gap.’ Using Nimbus7/ERB results produced a 0.05 percent per decade upward trend between solar minima, while ERBS results produced no trend. Until this study, the cause of this difference, and hence the validity of the TSI trend, was uncertain. Willson has identified specific errors in the ERBS data responsible for the difference. The accurate long-term dataset, therefore, shows a significant positive trend (.05 percent per decade) in TSI between the solar minima of solar cycles 21 to 23 (1978 to present). This major finding may help climatologists to distinguish between solar and man-made influences on climate.

NASA’s ACRIMSAT/ACRIM3 experiment began in 2000 and will extend the long-term solar observations into the future for at least a five-year minimum mission.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/
http://www.gsfc.nasa.gov/topstory/2003/0313irradiance.html
http://www.acrim.com

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>