Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study finds increasing solar trend that can change climate

21.03.2003


Since the late 1970s, the amount of solar radiation the sun emits, during times of quiet sunspot activity, has increased by nearly .05 percent per decade, according to a NASA funded study.



"This trend is important because, if sustained over many decades, it could cause significant climate change," said Richard Willson, a researcher affiliated with NASA’s Goddard Institute for Space Studies and Columbia University’s Earth Institute, New York. He is the lead author of the study recently published in Geophysical Research Letters.

"Historical records of solar activity indicate that solar radiation has been increasing since the late 19th century. If a trend, comparable to the one found in this study, persisted throughout the 20th century, it would have provided a significant component of the global warming the Intergovernmental Panel on Climate Change reports to have occurred over the past 100 years," he said.


NASA’s Earth Science Enterprise funded this research as part of its mission to understand and protect our home planet by studying the primary causes of climate variability, including trends in solar radiation that may be a factor in global climate change.

The solar cycle occurs approximately every 11 years when the sun undergoes a period of increased magnetic and sunspot activity called the "solar maximum," followed by a quiet period called the "solar minimum."

Although the inferred increase of solar irradiance in 24 years, about 0.1 percent, is not enough to cause notable climate change, the trend would be important if maintained for a century or more. Satellite observations of total solar irradiance have obtained a long enough record (over 24 years) to begin looking for this effect.

Total Solar Irradiance (TSI) is the radiant energy received by the Earth from the sun, over all wavelengths, outside the atmosphere. TSI interaction with the Earth’s atmosphere, oceans and landmasses is the biggest factor determining our climate. To put it into perspective, decreases in TSI of 0.2 percent occur during the weeklong passage of large sunspot groups across our side of the sun. These changes are relatively insignificant compared to the sun’s total output of energy, yet equivalent to all the energy that mankind uses in a year. According to Willson, small variations, like the one found in this study, if sustained over many decades, could have significant climate effects.

In order to investigate the possibility of a solar trend, Willson needed to put together a long-term dataset of the sun’s total output. Six overlapping satellite experiments have monitored TSI since late 1978. The first record came from the National Oceanic and Atmospheric Administration’s (NOAA) Nimbus7 Earth Radiation Budget (ERB) experiment (1978 - 1993). Other records came from NASA’s Active Cavity Radiometer Irradiance Monitors: ACRIM1 on the Solar Maximum Mission (1980 - 1989), ACRIM2 on the Upper Atmosphere Research Satellite (1991 - 2001) and ACRIM3 on the ACRIMSAT satellite (2000 to present). Also, NASA launched its own Earth Radiation Budget Experiment on its Earth Radiation Budget Satellite (ERBS) in 1984. The European Space Agency’s (ESA) SOHO/VIRGO experiment also provided an independent data set (1996 to 1998).

In this study, Willson, who is also Principal Investigator of NASA’s ACRIM experiments, compiled a TSI record of over 24 years by carefully piecing together the overlapping records. In order to construct a long-term dataset, he needed to bridge a two-year gap (1989 to 1991) between ACRIM1 and ACRIM2. Both the Nimbus7/ERB and ERBS measurements overlapped the ACRIM ’gap.’ Using Nimbus7/ERB results produced a 0.05 percent per decade upward trend between solar minima, while ERBS results produced no trend. Until this study, the cause of this difference, and hence the validity of the TSI trend, was uncertain. Willson has identified specific errors in the ERBS data responsible for the difference. The accurate long-term dataset, therefore, shows a significant positive trend (.05 percent per decade) in TSI between the solar minima of solar cycles 21 to 23 (1978 to present). This major finding may help climatologists to distinguish between solar and man-made influences on climate.

NASA’s ACRIMSAT/ACRIM3 experiment began in 2000 and will extend the long-term solar observations into the future for at least a five-year minimum mission.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/
http://www.gsfc.nasa.gov/topstory/2003/0313irradiance.html
http://www.acrim.com

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>