Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Effects from Rapid, Global Climate and Ocean Changes of the Past

21.03.2003


An international team of marine geologists has just completed an expedition to an area off the coast of Surinam known as the Demerara Rise. The scientists were part of the two-month Leg 207 of the NSF-supported Ocean Drilling Program (ODP) expedition in the equatorial Atlantic Ocean. The project studied periods in Earth’s history that have undergone rapid climate and ocean circulation changes and likely led to mass extinctions of plants and animals.


The National Science Foundation supports the Ocean Drilling Program. Using equipment like the drill pictured here, workers obtain geologic samples from the deep seafloor that provide scientists with new information on Earth’s history. Examples of information documented by these samples include a history of the ocean basins and evidence of drastically changing climates on earth, including more ice ages than were previously known.
Photo Credit: Texas A&M University



Three decades ago, geologists found sediments in the Demerara Rise from the Cretaceous Period (140-65 million years ago) that contained evidence of times when the equatorial Atlantic Ocean was without oxygen. These periods, known as “ocean anoxic events,” indicate that the oceans had a vastly different circulation pattern than they do today.

"Therefore, climate would have been significantly different. We don’t yet fully understand the reasons for these differences," said Jochen Erbacher of the Federal Institute for Geosciences and Natural Resources in Germany. "Our objective [on this cruise] was to re-core the former site to understand past ocean circulation with respect to water depth change."


Scientists also brought up sediment cores that show other periods of dramatic change in Earth’s history. In these sediments are well-preserved intervals of the Cretaceous/Tertiary boundary. At that time, some 65 million years ago, a huge asteroid or comet crashed into the Earth. Scientists believe the resulting cloud of debris may have blocked out sunlight, resulting in the extinction of plants and animals, including dinosaurs.

The Leg 207 team included sedimentologists, stratigraphers, paleontologists, geochemists, engineers, and geophysicists.

"It is only through the integration of all these disciplines that we can begin to understand the causes and effects of these periods of climatic and oceanographic change," said scientist David Mosher of the Geological Survey of Canada. "With a better understanding of what happened in the past, we can perhaps know more about what the Earth is presently enduring," he said.

Adds Paul Dauphin, program director for ODP at NSF, "The research team chose this area for the potentially high-resolution paleoceanographic records that could be recovered [in sediments] for the time intervals of interest, and for the important role that tropical regions play in driving ocean and atmospheric circulation."

ODP is an international partnership of scientists and research institutions organized to study the evolution and structure of the Earth. It is funded principally by NSF, with substantial contributions from international partners.

Cheryl Dybas | NSF

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>