Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boundary Between Earth’s Magnetic Field and Sun’s Solar Wind Riddled with "Swiss Cheese" Holes

21.03.2003


Aurora Australis--the Southern Lights--over the geodesic dome at the National Science Foundation’s Amundsen-Scott South Pole Station. The aluminum dome has housed the main station buildings since the 1970s. The Amundsen-Scott station is one of three United States research stations on Antarctica. The National Science Foundation operates them all.

The Aurora Australis is the atmospheric phenomenon known familiarly as the Southern Lights. Like its more familiar counterpart, the Aurora Borealis--or Northern Lights, the phenomenon is caused by the solar wind passing through the upper atmosphere. But the Aurora Australis is far less frequently observed because so few people live in Antarctica during the austral winter.
Photo Credit: Jonathan Berry, National Science Foundation


Magnetic fields explosively release energy in events throughout the universe, from experiments conducted in laboratories to huge outbursts within galaxies. On the Sun, these magnetic explosions are responsible for solar flares and ejections of material from the Sun’s corona.

Similar events associated with Earth’s magnetic field drive magnetic storms, and the dramatic brightening and expansion of the northern and southern lights, the aurora borealis and aurora australis. The reconnection of twisted and complex lines of magnetic force relates these phenomena to each other.

Scientists have long debated whether the fast release of energy that occurs during "magnetic reconnection" is a smooth or turbulent process. Scientists funded by NSF have now used large-scale computer simulations, combined with direct observations from satellites, to show that the energy release is likely the result of turbulent processes.



This knowledge may explain the effect of solar storms on Earth, from interruptions of satellite orbits to electrical outages in cities and towns.

According to recent research results by James Drake at the University of Maryland in College Park and other scientists, the intense electric currents generated during magnetic reconnection produce "electron holes," regions where electrons are sparse.

Satellite observations have shown that the boundary between Earth’s magnetic field and the solar wind (known as the magnetopause) is riddled like Swiss cheese, with holes that may reach several miles in diameter. The holes move in the opposite direction of the prevailing electric current at speeds that can be faster than 1,000 miles per second, or 4 million miles per hour.

Says Kile Baker, program director in NSF’s division of atmospheric sciences, which funded the research, "The birth and death of these electron ’holes,’ and the intense electric fields associated with them, lead to strong electron scattering and energizing."

An understanding of this process is critical to explaining why magnetic explosions in space release energy so quickly, and so explosively, he adds.

Cheryl Dybas | NSF

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>