Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boundary Between Earth’s Magnetic Field and Sun’s Solar Wind Riddled with "Swiss Cheese" Holes

21.03.2003


Aurora Australis--the Southern Lights--over the geodesic dome at the National Science Foundation’s Amundsen-Scott South Pole Station. The aluminum dome has housed the main station buildings since the 1970s. The Amundsen-Scott station is one of three United States research stations on Antarctica. The National Science Foundation operates them all.

The Aurora Australis is the atmospheric phenomenon known familiarly as the Southern Lights. Like its more familiar counterpart, the Aurora Borealis--or Northern Lights, the phenomenon is caused by the solar wind passing through the upper atmosphere. But the Aurora Australis is far less frequently observed because so few people live in Antarctica during the austral winter.
Photo Credit: Jonathan Berry, National Science Foundation


Magnetic fields explosively release energy in events throughout the universe, from experiments conducted in laboratories to huge outbursts within galaxies. On the Sun, these magnetic explosions are responsible for solar flares and ejections of material from the Sun’s corona.

Similar events associated with Earth’s magnetic field drive magnetic storms, and the dramatic brightening and expansion of the northern and southern lights, the aurora borealis and aurora australis. The reconnection of twisted and complex lines of magnetic force relates these phenomena to each other.

Scientists have long debated whether the fast release of energy that occurs during "magnetic reconnection" is a smooth or turbulent process. Scientists funded by NSF have now used large-scale computer simulations, combined with direct observations from satellites, to show that the energy release is likely the result of turbulent processes.



This knowledge may explain the effect of solar storms on Earth, from interruptions of satellite orbits to electrical outages in cities and towns.

According to recent research results by James Drake at the University of Maryland in College Park and other scientists, the intense electric currents generated during magnetic reconnection produce "electron holes," regions where electrons are sparse.

Satellite observations have shown that the boundary between Earth’s magnetic field and the solar wind (known as the magnetopause) is riddled like Swiss cheese, with holes that may reach several miles in diameter. The holes move in the opposite direction of the prevailing electric current at speeds that can be faster than 1,000 miles per second, or 4 million miles per hour.

Says Kile Baker, program director in NSF’s division of atmospheric sciences, which funded the research, "The birth and death of these electron ’holes,’ and the intense electric fields associated with them, lead to strong electron scattering and energizing."

An understanding of this process is critical to explaining why magnetic explosions in space release energy so quickly, and so explosively, he adds.

Cheryl Dybas | NSF

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>