Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boundary Between Earth’s Magnetic Field and Sun’s Solar Wind Riddled with "Swiss Cheese" Holes

21.03.2003


Aurora Australis--the Southern Lights--over the geodesic dome at the National Science Foundation’s Amundsen-Scott South Pole Station. The aluminum dome has housed the main station buildings since the 1970s. The Amundsen-Scott station is one of three United States research stations on Antarctica. The National Science Foundation operates them all.

The Aurora Australis is the atmospheric phenomenon known familiarly as the Southern Lights. Like its more familiar counterpart, the Aurora Borealis--or Northern Lights, the phenomenon is caused by the solar wind passing through the upper atmosphere. But the Aurora Australis is far less frequently observed because so few people live in Antarctica during the austral winter.
Photo Credit: Jonathan Berry, National Science Foundation


Magnetic fields explosively release energy in events throughout the universe, from experiments conducted in laboratories to huge outbursts within galaxies. On the Sun, these magnetic explosions are responsible for solar flares and ejections of material from the Sun’s corona.

Similar events associated with Earth’s magnetic field drive magnetic storms, and the dramatic brightening and expansion of the northern and southern lights, the aurora borealis and aurora australis. The reconnection of twisted and complex lines of magnetic force relates these phenomena to each other.

Scientists have long debated whether the fast release of energy that occurs during "magnetic reconnection" is a smooth or turbulent process. Scientists funded by NSF have now used large-scale computer simulations, combined with direct observations from satellites, to show that the energy release is likely the result of turbulent processes.



This knowledge may explain the effect of solar storms on Earth, from interruptions of satellite orbits to electrical outages in cities and towns.

According to recent research results by James Drake at the University of Maryland in College Park and other scientists, the intense electric currents generated during magnetic reconnection produce "electron holes," regions where electrons are sparse.

Satellite observations have shown that the boundary between Earth’s magnetic field and the solar wind (known as the magnetopause) is riddled like Swiss cheese, with holes that may reach several miles in diameter. The holes move in the opposite direction of the prevailing electric current at speeds that can be faster than 1,000 miles per second, or 4 million miles per hour.

Says Kile Baker, program director in NSF’s division of atmospheric sciences, which funded the research, "The birth and death of these electron ’holes,’ and the intense electric fields associated with them, lead to strong electron scattering and energizing."

An understanding of this process is critical to explaining why magnetic explosions in space release energy so quickly, and so explosively, he adds.

Cheryl Dybas | NSF

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>