Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boundary Between Earth’s Magnetic Field and Sun’s Solar Wind Riddled with "Swiss Cheese" Holes

21.03.2003


Aurora Australis--the Southern Lights--over the geodesic dome at the National Science Foundation’s Amundsen-Scott South Pole Station. The aluminum dome has housed the main station buildings since the 1970s. The Amundsen-Scott station is one of three United States research stations on Antarctica. The National Science Foundation operates them all.

The Aurora Australis is the atmospheric phenomenon known familiarly as the Southern Lights. Like its more familiar counterpart, the Aurora Borealis--or Northern Lights, the phenomenon is caused by the solar wind passing through the upper atmosphere. But the Aurora Australis is far less frequently observed because so few people live in Antarctica during the austral winter.
Photo Credit: Jonathan Berry, National Science Foundation


Magnetic fields explosively release energy in events throughout the universe, from experiments conducted in laboratories to huge outbursts within galaxies. On the Sun, these magnetic explosions are responsible for solar flares and ejections of material from the Sun’s corona.

Similar events associated with Earth’s magnetic field drive magnetic storms, and the dramatic brightening and expansion of the northern and southern lights, the aurora borealis and aurora australis. The reconnection of twisted and complex lines of magnetic force relates these phenomena to each other.

Scientists have long debated whether the fast release of energy that occurs during "magnetic reconnection" is a smooth or turbulent process. Scientists funded by NSF have now used large-scale computer simulations, combined with direct observations from satellites, to show that the energy release is likely the result of turbulent processes.



This knowledge may explain the effect of solar storms on Earth, from interruptions of satellite orbits to electrical outages in cities and towns.

According to recent research results by James Drake at the University of Maryland in College Park and other scientists, the intense electric currents generated during magnetic reconnection produce "electron holes," regions where electrons are sparse.

Satellite observations have shown that the boundary between Earth’s magnetic field and the solar wind (known as the magnetopause) is riddled like Swiss cheese, with holes that may reach several miles in diameter. The holes move in the opposite direction of the prevailing electric current at speeds that can be faster than 1,000 miles per second, or 4 million miles per hour.

Says Kile Baker, program director in NSF’s division of atmospheric sciences, which funded the research, "The birth and death of these electron ’holes,’ and the intense electric fields associated with them, lead to strong electron scattering and energizing."

An understanding of this process is critical to explaining why magnetic explosions in space release energy so quickly, and so explosively, he adds.

Cheryl Dybas | NSF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>