Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows lightning adds to ozone level

20.03.2003


Lightning may be Mother Nature’s greatest show on Earth, but scientists now know it can produce significant amounts of ozone and other gases that affect air chemistry.


Lightning Has a Big Effect on Regional Pollution

Summertime lightning over the United States increases regional pollution by significant amounts and also over a large portion of the northern hemisphere, surpassing those by human activities. CREDIT: Photograph by M. Garay


The Microlab Satellite and the OTD Lightning Detector

The Optical Transient Detector (OTD), aboard the Microlab satellite, is the world’s first space-based sensor capable of detecting and locating lightning events in the daytime as well as during the nighttime with high detection efficiency. It was designed and built at Marshall Space Flight Center (MSFC).



Researcher Renyi Zhang of Texas A&M University helped lead a study on the impact of lightning, and the results are surprising: Lightning can be responsible for as much as 90 percent of the nitrogen oxides in the summer and at the same time increase ozone levels as much as 30 percent in the free troposphere, the area that extends 3-8 miles above the Earth’s surface.

The amount of ozone and nitrogen oxides that lightning creates is greater than those created by human activities in that level of the atmosphere, the study shows.


Zhang’s research is published in the current Proceedings of the National Academy of Sciences and the study was supported by NASA and the Texas Air Research Center.

Each year, about 77 million lightning bolts strike the United States, and worldwide lightning flashes occur about 60 times per second. Zhang and his colleague, Xuexi Tie of the National Center for Atmospheric Research, have confirmed increased levels of nitrogen oxides following lightning strikes. Their study analyzed lightning strikes over a 5-year period in the United States.

"Ironically, over the U.S., lightning accounts for only about 5 percent of the total nitrogen oxide annual emissions and about 14 percent of the total emissions in July," Zhang explains.

"The largest source of nitrogen oxides over the U.S. is the burning of fossil fuels, but such a small emission by lightning plays a huge role in influencing regional air chemistry. The reason is that nitrogen oxides from fossil fuels burning is released close to the Earth’s surface and is consumed rapidly by chemical reactions before being transported upward. But lightning directly releases nitrogen oxides throughout the entire troposphere, or as high as eight miles," Zhang adds.

In addition, Zhang says there is strong evidence that urban air pollution may contribute to more lightning, creating more ozone over the United States. Zhang says nitrogen oxides can lead to the formation of ozone and smog, and these can greatly increase chemical reactions in the atmosphere.

Ozone can also affect chemical activities in the atmosphere and even affect climate changes around the world by acting as a greenhouse gas.

Zhang believes the results of his study show both good and bad news.

"The good news is that lightning makes more oxidants, which do help to clean up the atmosphere," he says.

"The bad news is that lightning also generates more ozone, which is not good for the environment. We can’t control lightning, but we now know we can learn a lot about it and what it creates."

Renyi Zhang | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>