Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows lightning adds to ozone level

20.03.2003


Lightning may be Mother Nature’s greatest show on Earth, but scientists now know it can produce significant amounts of ozone and other gases that affect air chemistry.


Lightning Has a Big Effect on Regional Pollution

Summertime lightning over the United States increases regional pollution by significant amounts and also over a large portion of the northern hemisphere, surpassing those by human activities. CREDIT: Photograph by M. Garay


The Microlab Satellite and the OTD Lightning Detector

The Optical Transient Detector (OTD), aboard the Microlab satellite, is the world’s first space-based sensor capable of detecting and locating lightning events in the daytime as well as during the nighttime with high detection efficiency. It was designed and built at Marshall Space Flight Center (MSFC).



Researcher Renyi Zhang of Texas A&M University helped lead a study on the impact of lightning, and the results are surprising: Lightning can be responsible for as much as 90 percent of the nitrogen oxides in the summer and at the same time increase ozone levels as much as 30 percent in the free troposphere, the area that extends 3-8 miles above the Earth’s surface.

The amount of ozone and nitrogen oxides that lightning creates is greater than those created by human activities in that level of the atmosphere, the study shows.


Zhang’s research is published in the current Proceedings of the National Academy of Sciences and the study was supported by NASA and the Texas Air Research Center.

Each year, about 77 million lightning bolts strike the United States, and worldwide lightning flashes occur about 60 times per second. Zhang and his colleague, Xuexi Tie of the National Center for Atmospheric Research, have confirmed increased levels of nitrogen oxides following lightning strikes. Their study analyzed lightning strikes over a 5-year period in the United States.

"Ironically, over the U.S., lightning accounts for only about 5 percent of the total nitrogen oxide annual emissions and about 14 percent of the total emissions in July," Zhang explains.

"The largest source of nitrogen oxides over the U.S. is the burning of fossil fuels, but such a small emission by lightning plays a huge role in influencing regional air chemistry. The reason is that nitrogen oxides from fossil fuels burning is released close to the Earth’s surface and is consumed rapidly by chemical reactions before being transported upward. But lightning directly releases nitrogen oxides throughout the entire troposphere, or as high as eight miles," Zhang adds.

In addition, Zhang says there is strong evidence that urban air pollution may contribute to more lightning, creating more ozone over the United States. Zhang says nitrogen oxides can lead to the formation of ozone and smog, and these can greatly increase chemical reactions in the atmosphere.

Ozone can also affect chemical activities in the atmosphere and even affect climate changes around the world by acting as a greenhouse gas.

Zhang believes the results of his study show both good and bad news.

"The good news is that lightning makes more oxidants, which do help to clean up the atmosphere," he says.

"The bad news is that lightning also generates more ozone, which is not good for the environment. We can’t control lightning, but we now know we can learn a lot about it and what it creates."

Renyi Zhang | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>