Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Explains "Last Gasp Of Ice Age", Says U Of T Prof

14.03.2003


The melting of an Antarctic ice sheet roughly 14,000 years ago triggered a period of warming in Europe that marked the beginning of the end of the Earth’s last ice age, says a new study.

A paper in the March 14 issue of the journal Science suggests that a catastrophic collapse of an Antarctic ice sheet dumped roughly a million cubic litres per second of freshwater into the southern oceans, changing the climate thousands of kilometres to the north and ushering in a dramatic climate shift known as the Bølling-Allerød warm interval.

"The paper describes the last gasp of the ice age," says Jerry Mitrovica, the J. Tuzo Wilson Professor of Geophysics at the University of Toronto and co-author of the paper. "These are the spasms that got us from a climate where three kilometres of ice covered Canada to today’s conditions. We’re saying that what pulled us out of this - what ended the ice age - was this remarkable sequence of events. It all started in the Antarctic."



Last year, Mitrovica and co-author Professor Peter Clark of the University of Oregon made headlines with their theory that the sudden influx of freshwater that occurred 14,000 years ago came from the Antarctic. Sea level changes recorded in corals and organic material from places like Barbados and Vietnam indicated that roughly 14,000 years ago, the world’s sea level rose by an average of 20 metres over the course of about 200 years - roughly 100 times faster than today’s rate of sea level rise.

The 2002 article countered the long-standing belief that the melting ice came from North America. Instead, said Mitrovica, it mostly came from the Antarctic. The profound climate repercussions of this event, known as meltwater pulse 1A (mwp-1A), are described in the latest paper, which is co-authored with Clark, principal investigator Professor Andrew Weaver and post-doctoral fellow Oleg Saenko of the University of Victoria.

The team created a computer model to simulate the effect of mwp-1A. They found that if a massive influx of freshwater were suddenly deposited in the southern oceans, it intensifies a massive river of warm water called thermohaline circulation.

This conveyor belt-like water current, which is driven by temperature and salinity, rises off Europe, sinks farther north and turns back to the south. "It dramatically influences climate," says Mitrovica, an associate with the Canadian Institute for Advanced Research.

By shunting more warm water towards Europe and the north Atlantic, he explains, the region’s climate was significantly heated, leading to the thousand-year-long Bølling-Allerød warm interval. The model also successfully predicts the significant cooling of the south - known as the Antarctic Cold Reversal - that coincided with the northern warming and that has eluded explanation. In turn, this began to melt the Laurentide and Fennoscandian icesheets that covered North America and northwestern Europe, respectively.

That melting, says Mitrovica, released freshwater into the north Atlantic, shutting down the conveyor belt and cooling the north. "That explains a very famous climate event called the Younger Dryas cold interval," he says, referring to a period around 13,000 years ago when Europe went into a deep freeze.

But despite this chillier interval, says Mitrovica, the melting marked the beginning of the end for the massive glaciers that had covered the Earth’s continents. "Once the process of warming the north began, the main deglaciation started and the ice age ended," he says.

The model is able to explain the sequence of dramatic climate changes taking place between roughly 10,000 and 20,000 years ago. "It’s like dominoes," says Mitrovica. "It pieces together all of the major climate events of that period. By taking the meltwater pulse from the Antarctic, everything falls beautifully into place."

The research was funded by the Natural Sciences and Engineering Research Council of Canada, the Killam Foundation, the National Science Foundation and the Canadian Institute for Advanced Research.

CONTACT:

Jerry Mitrovica, Nicolle Wahl
Department of Physics U of T Public Affairs
416-978-4946 416-978-6974
jxm@physics.utoronto.ca
nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>