Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Explains "Last Gasp Of Ice Age", Says U Of T Prof

14.03.2003


The melting of an Antarctic ice sheet roughly 14,000 years ago triggered a period of warming in Europe that marked the beginning of the end of the Earth’s last ice age, says a new study.

A paper in the March 14 issue of the journal Science suggests that a catastrophic collapse of an Antarctic ice sheet dumped roughly a million cubic litres per second of freshwater into the southern oceans, changing the climate thousands of kilometres to the north and ushering in a dramatic climate shift known as the Bølling-Allerød warm interval.

"The paper describes the last gasp of the ice age," says Jerry Mitrovica, the J. Tuzo Wilson Professor of Geophysics at the University of Toronto and co-author of the paper. "These are the spasms that got us from a climate where three kilometres of ice covered Canada to today’s conditions. We’re saying that what pulled us out of this - what ended the ice age - was this remarkable sequence of events. It all started in the Antarctic."



Last year, Mitrovica and co-author Professor Peter Clark of the University of Oregon made headlines with their theory that the sudden influx of freshwater that occurred 14,000 years ago came from the Antarctic. Sea level changes recorded in corals and organic material from places like Barbados and Vietnam indicated that roughly 14,000 years ago, the world’s sea level rose by an average of 20 metres over the course of about 200 years - roughly 100 times faster than today’s rate of sea level rise.

The 2002 article countered the long-standing belief that the melting ice came from North America. Instead, said Mitrovica, it mostly came from the Antarctic. The profound climate repercussions of this event, known as meltwater pulse 1A (mwp-1A), are described in the latest paper, which is co-authored with Clark, principal investigator Professor Andrew Weaver and post-doctoral fellow Oleg Saenko of the University of Victoria.

The team created a computer model to simulate the effect of mwp-1A. They found that if a massive influx of freshwater were suddenly deposited in the southern oceans, it intensifies a massive river of warm water called thermohaline circulation.

This conveyor belt-like water current, which is driven by temperature and salinity, rises off Europe, sinks farther north and turns back to the south. "It dramatically influences climate," says Mitrovica, an associate with the Canadian Institute for Advanced Research.

By shunting more warm water towards Europe and the north Atlantic, he explains, the region’s climate was significantly heated, leading to the thousand-year-long Bølling-Allerød warm interval. The model also successfully predicts the significant cooling of the south - known as the Antarctic Cold Reversal - that coincided with the northern warming and that has eluded explanation. In turn, this began to melt the Laurentide and Fennoscandian icesheets that covered North America and northwestern Europe, respectively.

That melting, says Mitrovica, released freshwater into the north Atlantic, shutting down the conveyor belt and cooling the north. "That explains a very famous climate event called the Younger Dryas cold interval," he says, referring to a period around 13,000 years ago when Europe went into a deep freeze.

But despite this chillier interval, says Mitrovica, the melting marked the beginning of the end for the massive glaciers that had covered the Earth’s continents. "Once the process of warming the north began, the main deglaciation started and the ice age ended," he says.

The model is able to explain the sequence of dramatic climate changes taking place between roughly 10,000 and 20,000 years ago. "It’s like dominoes," says Mitrovica. "It pieces together all of the major climate events of that period. By taking the meltwater pulse from the Antarctic, everything falls beautifully into place."

The research was funded by the Natural Sciences and Engineering Research Council of Canada, the Killam Foundation, the National Science Foundation and the Canadian Institute for Advanced Research.

CONTACT:

Jerry Mitrovica, Nicolle Wahl
Department of Physics U of T Public Affairs
416-978-4946 416-978-6974
jxm@physics.utoronto.ca
nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>