Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 1991 Mt. Pinatubo Eruption Provides a Natural Test for the Influence of Arctic Circulation onClimate

13.03.2003


A recent NASA-funded study has linked the 1991 eruption of the Mount Pinatubo to a strengthening of a climate pattern called the Arctic Oscillation. For two years following the volcanic eruption, the Arctic Oscillation caused winter warming over land areas in the high and middle latitudes of the Northern Hemisphere, despite a cooling effect from volcanic particles that blocked sunlight.


The Arctic Oscillation (AO)

A positive phase of the Arctic Oscillation (top) is associated with strengthening of winds circulating counterclockwise around the North Pole north of 55°N, that is, roughly in line with Moscow, Belfast, and Ketchikan, Alaska. In winter these winds pull more warm air from oceans to continents causing winter warming, and like a top spinning very fast, they hold a tight pattern over the North Pole and keep frigid air from moving south. Cool winds sweep across eastern Canada while North Atlantic storms bring rain and mild temperatures to Northern Europe. Drought conditions prevail over the Mediterranean region.

During the negative phase of the Arctic Oscillation (bottom), cool continental air plunges into the Midwestern United States and Western Europe while storms bring rainfall to the Mediterranean region. Credit: David W. J. Thompson, J. M. Wallace


Eruption of Mount Pinatubo, Philippines, July 1991

Strong explosive volcanic eruptions, like ones of the Mt. Pinatubo in Philippines in June 1991, inject millions of ton of sulfur dioxide gas at the altitudes of about 15 miles where it interacts with water vapor producing a volcanic aerosol layer that consists of tiny droplets of highly concentrated sulfuric acid.
As a result of the Pinatubo eruption, globally averaged surface temperature decreased by about 0.3 Kelvin (0.3 Celsius) for two years after the eruption and the temperature in the tropical lower stratosphere increased by about 2-3 Kelvin (2-3 Celsius). The tropospheric response over most land areas in the Northern Hemisphere is characterized by summer cooling and winter warming. Credit: U.S. Geological Survey, J.N. Marso, July 1991



One mission of NASA’s Earth Science Enterprise, which funded this research, is to better understand how the Earth system responds to human and naturally-induced changes, such as large volcanic eruptions.

“This study clarifies the effect of strong volcanic eruptions on climate, important by itself, and helps to better predict possible weather and short-term climate variations after strong volcanic eruptions,” said Georgiy Stenchikov, a researcher at Rutgers University’s Department of Environmental Sciences, New Brunswick, N.J., and lead author on a paper that appeared in a recent issue of the Journal of Geophysical Research.


A positive phase of the Arctic Oscillation has slowly strengthened over the few last decades and has been associated in prior research with observed climate warming.

“The study has important implications to climate change because it provides a test for mechanisms of the Arctic Oscillation,” Stenchikov said.

A positive phase of the Arctic Oscillation is associated with strengthening of winds circulating counterclockwise around the North Pole north of 55°N, that is, roughly in line with Moscow, Belfast, and Ketchikan, Alaska. In winter these winds pull more warm air from oceans to continents causing winter warming, and like a top spinning very fast, they hold a tight pattern over the North Pole and keep frigid air from moving south.

According to this research, temperature changes caused by a radiative effect of volcanic aerosols in two lower layers of the atmosphere, the troposphere and the stratosphere, can lead to a positive Arctic Oscillation phase. The troposphere extends from Earth’s surface to an altitude of 7 miles in the polar regions and expands to 13 miles in the tropics. The stratosphere is the next layer up with the top at an altitude of about 30 miles.

The study uses a general circulation model developed at the National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory to simulate how volcanic aerosols following the Pinatubo eruption impacted the climate.

In the troposphere, volcanic aerosols reflect solar radiation and cool the Earth’s surface, decreasing temperature differences between the equator and the North Pole in the bottom atmospheric layer. These changes end up inhibiting processes that slow counterclockwise winds that blow around the North Pole mostly in the stratosphere. This in turn strengthens a positive phase of the Arctic Oscillation.

In the stratosphere, volcanic aerosols absorb solar radiation, warm the lower stratosphere (about 15 miles above the Earth’s surface) and increase stratospheric temperature differences between the equator and the North Pole. These changes strengthen westerly winds in the lower stratosphere and help to create a positive phase of the Arctic Oscillation.

In previous research, an observed positive Arctic Oscillation trend has been attributed to greenhouse warming that led to an increase of stratospheric temperature differences between equator and pole. But this study finds that tropospheric temperature change in the course of climate warming may play an even greater role.

In one type of computer simulation, Stenchikov and colleagues isolated the contribution of a decreased temperature difference in the troposphere, and found that it could produce a positive phase of the Arctic Oscillation by itself. That’s because greenhouse heating near the North Pole melts reflective sea ice and snow, and reveals more water and land surfaces. These surfaces absorb the Sun’s rays and increasingly warm the Earth’s polar regions. Polar heating at the Earth’s surface lessens the temperature differences between the equator and North Pole in the troposphere, which ultimately strengthens a positive phase of the Arctic Oscillation.

The study also finds that when aerosols get into the stratosphere, very rapid reactions that destroy ozone (especially in high latitudes) take place on the surfaces of aerosol particles. When ozone gets depleted, less UV radiation is absorbed in the stratosphere. This cools the polar stratosphere, and increases the stratospheric equator-to-pole temperature difference, creating a positive phase of the Arctic Oscillation. Ozone data were obtained from NASA’s Total Ozone Mapping Spectrometer (TOMS) satellite and ozonesonde observations.

Krishna Ramanujan | NASA/Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0306aopin.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>