Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in jet stream, storm tracks, linked to prairie drought patterns, study finds

10.03.2003


New findings from Queen’s researchers will help experts better predict future drought patterns and water availability in the prairies.

An international research team including biologists Kathleen Laird and Brian Cumming from the Queen’s Paleoecological Environmental Assessment and Research Laboratory (PEARL), and Peter Leavitt from the University of Regina, investigated records of drought over the past 2000 years from lake sediments in the northern Canadian prairie region (Manitoba to Alberta), as well as from sites in North Dakota and Minnesota.

"Our results from the Canadian prairies show a previously unknown and abrupt shift in climatic conditions around AD 700, while in the northern U.S. prairies, the shift occurred 500 years later, at the onset of the Little Ice Age in North America," says Dr. Laird.



Although the mechanisms behind these patterns are poorly understood, the research team believes they are likely related to persistent changes in the shape and location of the jet stream and associated storm tracks.

"Similar large-scale shifts today would prove to be a major challenge for society, regardless of global warming – particularly since persistent periods of drought in the past have coincided with stress and even collapse of societies," Dr. Laird says.

The study will be published in the March issue of the Proceedings of the National Association of Sciences (PNAS). Also on the team are researchers from the University of Nebraska, and NASA’s National Space Science and Technology Center in Huntsville, AL.

In a previous study led by Dr. Cumming that spanned the past 5500 years, a similar large-scale change in climate was observed in British Columbia at AD 700. Additionally, they found that similar distinct shifts in climatic conditions occurred roughly every 1200 years throughout the entire span.

"The persistence and abrupt nature of these millennial-scale events represents a scale of climate change that isn’t well understood yet," says Dr. Cumming. "Consequently, these data have huge implications for future climate predictions, and particularly drought assessment, on the prairies."


The current study was supported by a strategic grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Contacts:

Nancy Dorrance, Queen’s News & Media Services, 613-533-2869
Nancy Marrello, Queen’s News & Media Services, 613-533-6000 ext. 74040

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca/

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>