Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers propose answer to basic atmospheric chemistry question

07.03.2003


Scientists from the University of Colorado at Boulder have proposed a long-sought answer to how atmospheric sulfate aerosols are formed in the stratosphere.



Conducted by researchers at the Cooperative Institute for Research in Environmental Sciences, or CIRES, the research shows how a fundamental molecular process driven by sunlight may play a significant role in determining the planet’s energy budget.

The research was a collaboration between Veronica Vaida, chair of the CU-Boulder chemistry and biochemistry department and a CIRES fellow, CIRES visiting fellows H. G. Kjaergaard from the University of Otago in New Zealand and D. J. Donaldson from the University of Toronto, and CIRES doctoral candidate P. E. Hintze.


A paper on the subject will appear in the March 7 issue of Science magazine. CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration headquartered on campus.

Atmospheric sulfates gather in a stratospheric region called the Junge layer that surrounds Earth’s surface at altitudes between nine and 21 miles, said Vaida. The Junge layer reflects sunlight back into space and radiation to Earth, affecting the planet’s energy budget.

The Junge layer is thought to be composed primarily of sulfuric acid and water molecules, she said. Because sulfates have important chemical and climate effects, scientists have wanted to understand how atmospheric sulfuric acid breaks down, releasing sulfur oxides in the upper stratosphere where concentrations have been measured.

When high-altitude air descends in the cold polar vortex each spring, the gases recombine and form the Junge layer, Vaida said. Sunlight can be absorbed by sulfuric acid molecules and in some instances decompose them.

"It was thought that solar radiation could break the bonds of sulfuric acid molecules at very high energies in the ultraviolet spectrum," Vaida said. But high-energy radiation is present only at the top of and above the atmosphere because the atmosphere effectively absorbs ultraviolet radiation.

"We ruled out the standard hypothesis that had been proposed but never observed," Vaida said. Instead, she said, the CIRES team sought ways that the sulfates could be breaking down within the visible range of light.

In order to explain the measured and modeled concentrations of sulfates found in the upper stratosphere and mesosphere, "The mechanism we proposed was really the only game in town," she said.

Using spectroscopy, the team investigated the effect of visible light on sulfuric acid molecules to prove that molecular rearrangements could be induced to explain the observed sulfate layer. "We found visible radiation at much lower energies than previously thought could accomplish the molecular breakdown," Vaida said.

"Understanding the fundamental properties of sulfuric acid, we now know what affects formation of the sulfate layer, and can predict its formation by looking at the altitude, temperature and solar flux," she said. "The work allows us to model chemical properties of the Earth’s atmosphere."

Support for the research was provided by the National Science Foundation, the Marsden Fund administered by the Royal Society of New Zealand and NSERC of Canada. Vaida credits the success for the team’s discovery to the CU-NOAA partnership at CIRES that unites university academic departments with eight NOAA laboratories. The collaboration produces an increased flow of ideas and additional access to specialized expertise.

"We had a lot of help from NOAA people uniquely qualified in the areas that we needed – the connection fostered by CIRES was key," she said. "We could bring together fundamental chemistry with atmospheric science in a way that can’t be done anywhere else – it was rather magical."

The next step is "to quantify the yield with which sulfur oxides are going to be released and refining our knowledge of related processes," Vaida said.


Contact: Veronica Vaida, (303) 492-8605
vaida@spot.colorado.edu
Annette Varani, (303) 492-5952
Nicolle Wahl, (416) 978-6974
Nicolle.wahl@utoronto.ca


Veronica Vaida | EurekAlert!

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>