Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers propose answer to basic atmospheric chemistry question

07.03.2003


Scientists from the University of Colorado at Boulder have proposed a long-sought answer to how atmospheric sulfate aerosols are formed in the stratosphere.



Conducted by researchers at the Cooperative Institute for Research in Environmental Sciences, or CIRES, the research shows how a fundamental molecular process driven by sunlight may play a significant role in determining the planet’s energy budget.

The research was a collaboration between Veronica Vaida, chair of the CU-Boulder chemistry and biochemistry department and a CIRES fellow, CIRES visiting fellows H. G. Kjaergaard from the University of Otago in New Zealand and D. J. Donaldson from the University of Toronto, and CIRES doctoral candidate P. E. Hintze.


A paper on the subject will appear in the March 7 issue of Science magazine. CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration headquartered on campus.

Atmospheric sulfates gather in a stratospheric region called the Junge layer that surrounds Earth’s surface at altitudes between nine and 21 miles, said Vaida. The Junge layer reflects sunlight back into space and radiation to Earth, affecting the planet’s energy budget.

The Junge layer is thought to be composed primarily of sulfuric acid and water molecules, she said. Because sulfates have important chemical and climate effects, scientists have wanted to understand how atmospheric sulfuric acid breaks down, releasing sulfur oxides in the upper stratosphere where concentrations have been measured.

When high-altitude air descends in the cold polar vortex each spring, the gases recombine and form the Junge layer, Vaida said. Sunlight can be absorbed by sulfuric acid molecules and in some instances decompose them.

"It was thought that solar radiation could break the bonds of sulfuric acid molecules at very high energies in the ultraviolet spectrum," Vaida said. But high-energy radiation is present only at the top of and above the atmosphere because the atmosphere effectively absorbs ultraviolet radiation.

"We ruled out the standard hypothesis that had been proposed but never observed," Vaida said. Instead, she said, the CIRES team sought ways that the sulfates could be breaking down within the visible range of light.

In order to explain the measured and modeled concentrations of sulfates found in the upper stratosphere and mesosphere, "The mechanism we proposed was really the only game in town," she said.

Using spectroscopy, the team investigated the effect of visible light on sulfuric acid molecules to prove that molecular rearrangements could be induced to explain the observed sulfate layer. "We found visible radiation at much lower energies than previously thought could accomplish the molecular breakdown," Vaida said.

"Understanding the fundamental properties of sulfuric acid, we now know what affects formation of the sulfate layer, and can predict its formation by looking at the altitude, temperature and solar flux," she said. "The work allows us to model chemical properties of the Earth’s atmosphere."

Support for the research was provided by the National Science Foundation, the Marsden Fund administered by the Royal Society of New Zealand and NSERC of Canada. Vaida credits the success for the team’s discovery to the CU-NOAA partnership at CIRES that unites university academic departments with eight NOAA laboratories. The collaboration produces an increased flow of ideas and additional access to specialized expertise.

"We had a lot of help from NOAA people uniquely qualified in the areas that we needed – the connection fostered by CIRES was key," she said. "We could bring together fundamental chemistry with atmospheric science in a way that can’t be done anywhere else – it was rather magical."

The next step is "to quantify the yield with which sulfur oxides are going to be released and refining our knowledge of related processes," Vaida said.


Contact: Veronica Vaida, (303) 492-8605
vaida@spot.colorado.edu
Annette Varani, (303) 492-5952
Nicolle Wahl, (416) 978-6974
Nicolle.wahl@utoronto.ca


Veronica Vaida | EurekAlert!

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>