Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes In The Earth’s Rotation Are In The Wind

06.03.2003


Because of Earth’s dynamic climate, winds and atmospheric pressure systems experience constant change. These fluctuations may affect how our planet rotates on its axis, according to NASA-funded research that used wind and satellite data.




NASA’s Earth Science Enterprise (ESE) mission is to understand the Earth system and its response to natural and human-induced changes for better prediction of climate, weather and natural hazards, such as atmospheric changes or El Nino events that may have contributed to the affect on Earth’s rotation.

"Changes in the atmosphere, specifically atmospheric pressure around the world, and the motions of the winds that may be related to such climate signals as El Nino are strong enough that their effect is observed in the Earth’s rotation signal," said David A. Salstein, an atmospheric scientist from Atmospheric and Environmental Research, Inc., of Lexington, Mass. who led a recent study.


From year to year, winds and air pressure patterns change, causing different forces to act on the solid Earth. During El Nino years, for example, the rotation of the Earth may slow ever so slightly because of stronger winds, increasing the length of a day by a fraction of a millisecond (thousandth of a second).

Issac Newton’s laws of motion explain how those quantities are related to the Earth’s rotation rate (leading to a change in the length of day) as well as the exact position in which the North Pole points in the heavens (known also as polar motion, or Earth wobble).

To understand the concept of angular momentum, visualize the Earth spinning in space. Given Earth’s overall mass and its rotation, it contains a certain amount of angular momentum. When an additional force acting at a distance from the Earth’s rotational axis occurs, referred to as a torque, such as changes in surface winds, or the distribution of high and low pressure patterns, especially near mountains, it can act to change the rate of the Earth’s rotation or even the direction of the rotational axis.

Because of the law of "conservation of angular momentum," small but detectable changes in the Earth’s rotation and those in the rotation of the atmosphere are linked. The conservation of angular momentum is a law of physics that states the total angular momentum of a rotating object with no outside force remains constant regardless of changes within the system.

An example of this principle occurs when a skater pulls his or her arms inward during a spin (changing the mass distribution to one nearer the rotation axis, reducing the "moment of inertia," and speeds up (increasing the skater’s spin); because the moment of inertia goes down, the spin rate must increase to keep the total angular momentum of the system unchanged.

"The key is that the sum of the angular momentum (push) of the solid Earth plus atmosphere system must stay constant unless an outside force (torque) is applied," Salstein said. "So if the atmosphere speeds up (stronger westerly winds) then the solid Earth must slow down (length-of-day increases). Also if more atmosphere moves to a lower latitude (further from the axis of rotation), and atmospheric pressure increases, it also gains angular momentum and the Earth would slow down as well."

Other motions of the atmosphere such as larger mass in one hemisphere than the other can lead to a wobble (like a washing machine with clothes off-balance) and the poles move, in accordance to the law of the conservation of angular momentum.

Salstein looked at wind and pressure measurements from a National Weather Service analysis that makes use of a combination of ground-based, aircraft, and space-based observations. The measurements for the Earth’s motions come from a variety of space-based measurements including satellites, like those in the Global Positioning System (GPS), the geodetic satellites that included records from NASA’s older LAGEOS satellite, and observations of distant astronomical objects using a technique known as Very Long Baseline Interferometry. Understanding the atmospheric pressure patterns, moreover, is essential to interpret results from NASA’s Gravity Recovery and Climate Experiment (GRACE).

The fact that the two vastly different systems, namely the meteorological and the astronomical, are in good agreement according to the conservation of angular momentum gives us assurance that both these types of measurements must be accurate. It shows, moreover, that changes in climate signals can have global implications on Earth’s overall rotation.

NASA’s ESE research focuses on the changes and variability in the Earth system, including atmospheric, oceanic, and geodetic areas. This research was recently presented at the annual meeting of the American Meteorological Society in Long Beach, Calif.

Rob Gutro | NASA Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0210rotation.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>