Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Images from Space Spotlight Asian, Australian Pollution

07.02.2003


January pollution from China and Southeast Asia
Image courtesy the NCAR MOPITT team.


Bush fires in southeastern Australia
Image courtesy the NCAR MOPITT team


A visualization of satellite data captured and processed January 1–20, 2003, by scientists at the National Center for Atmospheric Research (NCAR) shows heavy pollution from China and Southeast Asia blowing out over the Pacific Ocean. The near-real time capability represented by the image is a breakthrough for NCAR team members working with the Measurements of Pollution in the Troposphere (MOPITT) instrument aboard NASA’s Terra satellite.

The image shows levels of carbon monoxide (CO) in a region where pollution tends to begin increasing around January and continue rising through the spring. The sources include emissions from motor vehicles and industrial activities, the burning of wood and other vegetation for heat, and fires set to clear land for agriculture. Scientists are using satellite measurements along with data gathered in field campaigns to begin to untangle the different pollution sources.

In a second image, pollution from bush fires burning in southeast Australia is clearly visible. The data were captured above the fires January 15–20. The image shows levels of CO released by the fires. Because CO persists in the atmosphere for several weeks, it can be used to trace the path of pollution plumes above the fires as the plumes drift out thousands of miles into the usually pristine air over the southern Pacific Ocean.



"We’re very pleased to unveil this new ability to provide images very soon after the satellite observations are made," says John Gille, NCAR scientist and U.S. principal investigator for MOPITT. "This means our data can be helpful in pollution situations as they unfold."

CO gas is a pollutant in its own right and a useful tracer for others, such as ozone at or near ground level. CO can also be used to calculate the level of pollutant-cleansing chemicals in the atmosphere, such as the hydroxyl radical. When CO levels are high, the level of hydroxyl radical is usually lower and fewer pollutants are removed from the atmosphere.

"CO is involved in much of the chemistry of the lower atmosphere, and it’s now one of the few gases that we can measure from space, thanks to MOPITT," says NCAR scientist David Edwards. "The data give us a new window on chemical processes affecting the ability of the atmosphere to clean itself."

In the color images, the amount of CO mixed into a given quantity of air is represented as parts per billion by volume (ppbv). The concentrations range as high as 205 ppbv and as low as 50 ppbv. White areas indicate no data were collected, either due to lingering cloud cover or because the area falls in the gaps between MOPITT’s orbit-path views. MOPITT is a project of NCAR and the University of Toronto, with funding from NASA and the Canadian Space Agency.

Contact:

Anatta
UCAR Communications
Telephone: (303) 497-8604
E-mail: anatta@ucar.edu

Anatta | UCAR Communications
Further information:
http://www.ucar.edu/communications/newsreleases/2003/mopitt.html

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>