Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Images from Space Spotlight Asian, Australian Pollution

07.02.2003


January pollution from China and Southeast Asia
Image courtesy the NCAR MOPITT team.


Bush fires in southeastern Australia
Image courtesy the NCAR MOPITT team


A visualization of satellite data captured and processed January 1–20, 2003, by scientists at the National Center for Atmospheric Research (NCAR) shows heavy pollution from China and Southeast Asia blowing out over the Pacific Ocean. The near-real time capability represented by the image is a breakthrough for NCAR team members working with the Measurements of Pollution in the Troposphere (MOPITT) instrument aboard NASA’s Terra satellite.

The image shows levels of carbon monoxide (CO) in a region where pollution tends to begin increasing around January and continue rising through the spring. The sources include emissions from motor vehicles and industrial activities, the burning of wood and other vegetation for heat, and fires set to clear land for agriculture. Scientists are using satellite measurements along with data gathered in field campaigns to begin to untangle the different pollution sources.

In a second image, pollution from bush fires burning in southeast Australia is clearly visible. The data were captured above the fires January 15–20. The image shows levels of CO released by the fires. Because CO persists in the atmosphere for several weeks, it can be used to trace the path of pollution plumes above the fires as the plumes drift out thousands of miles into the usually pristine air over the southern Pacific Ocean.



"We’re very pleased to unveil this new ability to provide images very soon after the satellite observations are made," says John Gille, NCAR scientist and U.S. principal investigator for MOPITT. "This means our data can be helpful in pollution situations as they unfold."

CO gas is a pollutant in its own right and a useful tracer for others, such as ozone at or near ground level. CO can also be used to calculate the level of pollutant-cleansing chemicals in the atmosphere, such as the hydroxyl radical. When CO levels are high, the level of hydroxyl radical is usually lower and fewer pollutants are removed from the atmosphere.

"CO is involved in much of the chemistry of the lower atmosphere, and it’s now one of the few gases that we can measure from space, thanks to MOPITT," says NCAR scientist David Edwards. "The data give us a new window on chemical processes affecting the ability of the atmosphere to clean itself."

In the color images, the amount of CO mixed into a given quantity of air is represented as parts per billion by volume (ppbv). The concentrations range as high as 205 ppbv and as low as 50 ppbv. White areas indicate no data were collected, either due to lingering cloud cover or because the area falls in the gaps between MOPITT’s orbit-path views. MOPITT is a project of NCAR and the University of Toronto, with funding from NASA and the Canadian Space Agency.

Contact:

Anatta
UCAR Communications
Telephone: (303) 497-8604
E-mail: anatta@ucar.edu

Anatta | UCAR Communications
Further information:
http://www.ucar.edu/communications/newsreleases/2003/mopitt.html

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>