Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite helps scientists see effects of earthquakes in remote areas

06.02.2003


The unique capabilities of a NASA earth-observing satellite have allowed researchers to view the effects of a major earthquake that occurred in 2001 in Northern India near the border of Pakistan.



Lead author Bernard Pinty of the Institute for Environment and Sustainability in the Joint Research Centre of the European Commission, Ispra, Italy, and colleagues from the U.S., France and Germany, used the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA’s Terra satellite to observe the effects of a massive earthquake in the Gujarat province of India.

Considered one of the two most damaging seismic events in Indian recorded history, the Gujarat earthquake struck with a magnitude of 7.7 (Richter scale) on January 26, 2001. About 20,000 people died and another 16 million people were affected. Local residents reported fountains of water and sediments spouting from the Earth following the earthquake.


As a result of the earthquake’s intense ground shaking, loosely-packed, water-saturated sediments in the area liquefied, behaving more like a liquid than a solid. Ground water flowed up to the surface carrying sediments, flooding large areas including ancient riverbeds.

"Although the instrument’s multiangle and multispectral capabilities weren’t specifically developed for the purpose of detecting surface water, this is an exciting application that merits further investigation," said co-author David J. Diner, MISR Principal Investigator at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. "Of significance to the Gujarat event is MISR’s acquisition of compelling evidence of surface water far from the earthquake’s epicenter, particularly over remote locations inaccessible to teams on the ground."

Aside from collecting scientific data in hard to reach places, MISR also provides a map overview of what happened and the area affected. Such information could be used to detect places where survey teams could concentrate their efforts. In this case, MISR data demonstrated that specific areas of the Rann were more affected than others by dewatering. In addition, the data were instrumental in identifying distant sites of liquefaction. Such information may help to validate earthquake models and to further constrain relationships between earthquake magnitudes and distances of impacts.

"Satellites provide the best way to have a global view of an entire region, hundreds of square kilometers can be observed in a few minutes, and this happens at any time they fly over a place," said Pinty. "In the case of Gujarat, scientists were able to conduct surveys near the epicenter but could hardly access other regions also affected by the earthquake, partly because of the proximity of Pakistani border, a high security and politically sensitive region."

The earthquake’s epicenter was located about 80 kilometers (50 miles) east of the city of Bhuj, but the MISR instrument found dewatering, or release of water and sediment due to compression and liquefaction, as far as 200 km (124 miles) from the epicenter. Additionally, there was significant dewatering all along an 80-100 kms (50-62 miles) wide (south to north) ancient salt lake bed to the north of Bhuj, known as the Rann of Kutch.

In the days to weeks following the earthquake, along with ground cracks and other types of deformation, water flowed to the surface and progressively evaporated in various places. A year later, scientists could still observe the consequences of the earthquake across the Rann because the water that came up to the surface was very salty. After evaporation, the salt was left on the ground and MISR was able to detect it also.

The MISR instrument views the sunlit face of the Earth simultaneously at nine widely spaced angles, and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measurements of the brightness, contrast, and color of reflected sunlight.

One way MISR registers surface features is by picking up different wavelengths of light as they are reflected off the Earth’s surface. As the satellite passes overhead, MISR collects information over a 400 km (248 mile) swath at a spatial resolution of 275 meters (300 yards), instantaneously assessing surface features over large regions. Since the bright soils of the Rann of Kutch reflect most of the Sun’s incoming near-infrared radiation, and water bodies absorb near-infrared radiation, MISR can detect the contrast and thereby tell where dewatering from the earthquake occurred. Changes in reflection at different view angles also proved advantageous to identify the presence of surface water in other regions.


###
A paper on the study appears in the current issue of the American Geophysical Union’s journal, EOS.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0115gujarat.html
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>