Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite helps scientists see effects of earthquakes in remote areas

06.02.2003


The unique capabilities of a NASA earth-observing satellite have allowed researchers to view the effects of a major earthquake that occurred in 2001 in Northern India near the border of Pakistan.



Lead author Bernard Pinty of the Institute for Environment and Sustainability in the Joint Research Centre of the European Commission, Ispra, Italy, and colleagues from the U.S., France and Germany, used the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA’s Terra satellite to observe the effects of a massive earthquake in the Gujarat province of India.

Considered one of the two most damaging seismic events in Indian recorded history, the Gujarat earthquake struck with a magnitude of 7.7 (Richter scale) on January 26, 2001. About 20,000 people died and another 16 million people were affected. Local residents reported fountains of water and sediments spouting from the Earth following the earthquake.


As a result of the earthquake’s intense ground shaking, loosely-packed, water-saturated sediments in the area liquefied, behaving more like a liquid than a solid. Ground water flowed up to the surface carrying sediments, flooding large areas including ancient riverbeds.

"Although the instrument’s multiangle and multispectral capabilities weren’t specifically developed for the purpose of detecting surface water, this is an exciting application that merits further investigation," said co-author David J. Diner, MISR Principal Investigator at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. "Of significance to the Gujarat event is MISR’s acquisition of compelling evidence of surface water far from the earthquake’s epicenter, particularly over remote locations inaccessible to teams on the ground."

Aside from collecting scientific data in hard to reach places, MISR also provides a map overview of what happened and the area affected. Such information could be used to detect places where survey teams could concentrate their efforts. In this case, MISR data demonstrated that specific areas of the Rann were more affected than others by dewatering. In addition, the data were instrumental in identifying distant sites of liquefaction. Such information may help to validate earthquake models and to further constrain relationships between earthquake magnitudes and distances of impacts.

"Satellites provide the best way to have a global view of an entire region, hundreds of square kilometers can be observed in a few minutes, and this happens at any time they fly over a place," said Pinty. "In the case of Gujarat, scientists were able to conduct surveys near the epicenter but could hardly access other regions also affected by the earthquake, partly because of the proximity of Pakistani border, a high security and politically sensitive region."

The earthquake’s epicenter was located about 80 kilometers (50 miles) east of the city of Bhuj, but the MISR instrument found dewatering, or release of water and sediment due to compression and liquefaction, as far as 200 km (124 miles) from the epicenter. Additionally, there was significant dewatering all along an 80-100 kms (50-62 miles) wide (south to north) ancient salt lake bed to the north of Bhuj, known as the Rann of Kutch.

In the days to weeks following the earthquake, along with ground cracks and other types of deformation, water flowed to the surface and progressively evaporated in various places. A year later, scientists could still observe the consequences of the earthquake across the Rann because the water that came up to the surface was very salty. After evaporation, the salt was left on the ground and MISR was able to detect it also.

The MISR instrument views the sunlit face of the Earth simultaneously at nine widely spaced angles, and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measurements of the brightness, contrast, and color of reflected sunlight.

One way MISR registers surface features is by picking up different wavelengths of light as they are reflected off the Earth’s surface. As the satellite passes overhead, MISR collects information over a 400 km (248 mile) swath at a spatial resolution of 275 meters (300 yards), instantaneously assessing surface features over large regions. Since the bright soils of the Rann of Kutch reflect most of the Sun’s incoming near-infrared radiation, and water bodies absorb near-infrared radiation, MISR can detect the contrast and thereby tell where dewatering from the earthquake occurred. Changes in reflection at different view angles also proved advantageous to identify the presence of surface water in other regions.


###
A paper on the study appears in the current issue of the American Geophysical Union’s journal, EOS.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0115gujarat.html
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>