Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Joins Snow Study Over The Sea Of Japan

30.01.2003


NASA and two Japanese government agencies are collaborating on a snowfall study over Wakasa Bay, Japan. Using NASA’s Earth Observing System Aqua satellite, research aircraft and coastal radars to gather data, the joint effort is expanding scientific knowledge about where precipitation falls.




Until now, the north Pacific’s contributions to the global hydrologic cycle have been difficult to quantify. Precipitation measurements by satellite over open water are very important, because there are very few other ways to obtain the data. Snowfall is particularly difficult to measure from space even over the relatively uniform background of the ocean. New satellite instruments, that can detect precipitation over water, will give scientists data to help interpret how the hydrology of the Pacific Ocean impacts the U.S. and the world.

The Wakasa Bay Field Campaign is a combined research effort among NASA, the National Space Agency of Japan (NASDA), and the Japanese Meteorological Research Institute (MRI). The campaign began January 3 and runs through February 14.


"These experiments are critical to understanding whether the current El Nino event, for instance, actually increases global precipitation or merely redistributes it between land and ocean regions," said Tom Wilheit, Mission Scientist from Texas A&M University.

Wakasa Bay, located North of Osaka on the Sea of Japan, is known for its diverse weather in winter months. Ranging from extreme cold, that brings Siberian air and accompanying snow into the region, to fast moving extra-tropical low pressure systems, that consist primarily of rain at the surface, but originating as snowfall at higher altitudes.

A NASA P-3 Orion aircraft, from Wallops Island, Va., is flying over the bay and collecting data on snowfall and rainfall to compare to data being gathered by the Aqua satellite orbiting over the same area. The aircraft payload consists of five microwave sensors, each capable of uniquely observing precipitation and cloud properties.

On board Aqua is a Japanese-built Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) instrument. "With AMSR-E on Aqua, we’re able to extend the high quality precipitation measurements from the Tropical Rainfall Measuring Mission satellite to beyond the tropics, in fact into both the mid-and high latitudes," said Claire Parkinson, Aqua Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

Some of the measurements will also be used for another field campaign concerning sea ice in the Sea of Okhotsk and to compare with data from the AMSR instrument aboard the Japanese ADEOS-II satellite.

The Wakasa Bay experiment is designed to test the calculations and methods that scientists use to process satellite data. The P-3 Orion observations will be used to get precise values for the cloud and precipitation properties, such as the size distribution of the ice particles or raindrops, that are currently assumed in the satellite calculations. By replacing the assumed data with precise observations from the P-3, scientists can determine the accuracy of the Aqua AMSR-E rainfall and snowfall estimates.

"This mission will be helpful in understanding the north Pacific, because there is simply no place in this vast stretch of ocean where surface observations can be taken.

Despite its remoteness, the ocean’s size makes it an important player in the global hydrologic cycle that must be properly quantified to make progress in the global sense," said Christian Kummerow, Atmospheric Scientist at Colorado State University, Boulder, Co., one of the leaders of this mission.

NASA’s Aqua satellite was launched on May 4, 2002. The Aqua mission provides a multi-disciplinary study of the Earth’s atmospheric, oceanic, cryospheric, and land processes and their relationship to global change.


For the AMSR-E instrument website:
http://aqua.nasa.gov/AMSRE3.html

Rob Gutro | NASA Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0122japansnow.html
http://rain.atmos.colostate.edu/Wakasa
http://aqua.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>