Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Joins Snow Study Over The Sea Of Japan

30.01.2003


NASA and two Japanese government agencies are collaborating on a snowfall study over Wakasa Bay, Japan. Using NASA’s Earth Observing System Aqua satellite, research aircraft and coastal radars to gather data, the joint effort is expanding scientific knowledge about where precipitation falls.




Until now, the north Pacific’s contributions to the global hydrologic cycle have been difficult to quantify. Precipitation measurements by satellite over open water are very important, because there are very few other ways to obtain the data. Snowfall is particularly difficult to measure from space even over the relatively uniform background of the ocean. New satellite instruments, that can detect precipitation over water, will give scientists data to help interpret how the hydrology of the Pacific Ocean impacts the U.S. and the world.

The Wakasa Bay Field Campaign is a combined research effort among NASA, the National Space Agency of Japan (NASDA), and the Japanese Meteorological Research Institute (MRI). The campaign began January 3 and runs through February 14.


"These experiments are critical to understanding whether the current El Nino event, for instance, actually increases global precipitation or merely redistributes it between land and ocean regions," said Tom Wilheit, Mission Scientist from Texas A&M University.

Wakasa Bay, located North of Osaka on the Sea of Japan, is known for its diverse weather in winter months. Ranging from extreme cold, that brings Siberian air and accompanying snow into the region, to fast moving extra-tropical low pressure systems, that consist primarily of rain at the surface, but originating as snowfall at higher altitudes.

A NASA P-3 Orion aircraft, from Wallops Island, Va., is flying over the bay and collecting data on snowfall and rainfall to compare to data being gathered by the Aqua satellite orbiting over the same area. The aircraft payload consists of five microwave sensors, each capable of uniquely observing precipitation and cloud properties.

On board Aqua is a Japanese-built Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) instrument. "With AMSR-E on Aqua, we’re able to extend the high quality precipitation measurements from the Tropical Rainfall Measuring Mission satellite to beyond the tropics, in fact into both the mid-and high latitudes," said Claire Parkinson, Aqua Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

Some of the measurements will also be used for another field campaign concerning sea ice in the Sea of Okhotsk and to compare with data from the AMSR instrument aboard the Japanese ADEOS-II satellite.

The Wakasa Bay experiment is designed to test the calculations and methods that scientists use to process satellite data. The P-3 Orion observations will be used to get precise values for the cloud and precipitation properties, such as the size distribution of the ice particles or raindrops, that are currently assumed in the satellite calculations. By replacing the assumed data with precise observations from the P-3, scientists can determine the accuracy of the Aqua AMSR-E rainfall and snowfall estimates.

"This mission will be helpful in understanding the north Pacific, because there is simply no place in this vast stretch of ocean where surface observations can be taken.

Despite its remoteness, the ocean’s size makes it an important player in the global hydrologic cycle that must be properly quantified to make progress in the global sense," said Christian Kummerow, Atmospheric Scientist at Colorado State University, Boulder, Co., one of the leaders of this mission.

NASA’s Aqua satellite was launched on May 4, 2002. The Aqua mission provides a multi-disciplinary study of the Earth’s atmospheric, oceanic, cryospheric, and land processes and their relationship to global change.


For the AMSR-E instrument website:
http://aqua.nasa.gov/AMSRE3.html

Rob Gutro | NASA Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0122japansnow.html
http://rain.atmos.colostate.edu/Wakasa
http://aqua.nasa.gov

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>