Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Joins Snow Study Over The Sea Of Japan

30.01.2003


NASA and two Japanese government agencies are collaborating on a snowfall study over Wakasa Bay, Japan. Using NASA’s Earth Observing System Aqua satellite, research aircraft and coastal radars to gather data, the joint effort is expanding scientific knowledge about where precipitation falls.




Until now, the north Pacific’s contributions to the global hydrologic cycle have been difficult to quantify. Precipitation measurements by satellite over open water are very important, because there are very few other ways to obtain the data. Snowfall is particularly difficult to measure from space even over the relatively uniform background of the ocean. New satellite instruments, that can detect precipitation over water, will give scientists data to help interpret how the hydrology of the Pacific Ocean impacts the U.S. and the world.

The Wakasa Bay Field Campaign is a combined research effort among NASA, the National Space Agency of Japan (NASDA), and the Japanese Meteorological Research Institute (MRI). The campaign began January 3 and runs through February 14.


"These experiments are critical to understanding whether the current El Nino event, for instance, actually increases global precipitation or merely redistributes it between land and ocean regions," said Tom Wilheit, Mission Scientist from Texas A&M University.

Wakasa Bay, located North of Osaka on the Sea of Japan, is known for its diverse weather in winter months. Ranging from extreme cold, that brings Siberian air and accompanying snow into the region, to fast moving extra-tropical low pressure systems, that consist primarily of rain at the surface, but originating as snowfall at higher altitudes.

A NASA P-3 Orion aircraft, from Wallops Island, Va., is flying over the bay and collecting data on snowfall and rainfall to compare to data being gathered by the Aqua satellite orbiting over the same area. The aircraft payload consists of five microwave sensors, each capable of uniquely observing precipitation and cloud properties.

On board Aqua is a Japanese-built Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) instrument. "With AMSR-E on Aqua, we’re able to extend the high quality precipitation measurements from the Tropical Rainfall Measuring Mission satellite to beyond the tropics, in fact into both the mid-and high latitudes," said Claire Parkinson, Aqua Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

Some of the measurements will also be used for another field campaign concerning sea ice in the Sea of Okhotsk and to compare with data from the AMSR instrument aboard the Japanese ADEOS-II satellite.

The Wakasa Bay experiment is designed to test the calculations and methods that scientists use to process satellite data. The P-3 Orion observations will be used to get precise values for the cloud and precipitation properties, such as the size distribution of the ice particles or raindrops, that are currently assumed in the satellite calculations. By replacing the assumed data with precise observations from the P-3, scientists can determine the accuracy of the Aqua AMSR-E rainfall and snowfall estimates.

"This mission will be helpful in understanding the north Pacific, because there is simply no place in this vast stretch of ocean where surface observations can be taken.

Despite its remoteness, the ocean’s size makes it an important player in the global hydrologic cycle that must be properly quantified to make progress in the global sense," said Christian Kummerow, Atmospheric Scientist at Colorado State University, Boulder, Co., one of the leaders of this mission.

NASA’s Aqua satellite was launched on May 4, 2002. The Aqua mission provides a multi-disciplinary study of the Earth’s atmospheric, oceanic, cryospheric, and land processes and their relationship to global change.


For the AMSR-E instrument website:
http://aqua.nasa.gov/AMSRE3.html

Rob Gutro | NASA Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0122japansnow.html
http://rain.atmos.colostate.edu/Wakasa
http://aqua.nasa.gov

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>