Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

cean surface saltiness influences el nino forecasts

30.01.2003




NASA sponsored scientists have discovered by knowing the salt content of the ocean’s surface, they may be able to improve the ability to predict El Nino events. Scientists, studying the western Pacific Ocean, find regional changes in the saltiness of surface ocean water correspond to changes in upper ocean heat content in the months preceding an El Nino event. Knowing the distribution of surface salinity may help predict events.

Salinity and temperature combine to dictate the ocean’s density. Greater salinity, like colder temperatures, results in an increase in ocean density with a corresponding depression of the sea surface height. In warmer, fresher waters, the density is lower resulting in an elevation of the sea surface. These ocean height differences are related to the circulation of the ocean.

The surface salinity in two regions contributes to El Nino events: an area of warmer temperatures and lower salinity in the western Pacific, and the higher salinity and cooler temperatures in the eastern Pacific. Differences in surface salinity are related to changes in temperature and upper ocean heat content, which are part of the El Nino phenomenon. They have the potential to influence the Earth’s climate through air-sea interaction at the ocean’s surface.



The study, conducted for NASA by University of Maryland researchers Joaquim Ballabrera, Tony Busalacchi, and Ragu Murtugudde, is one of the first to look at ocean salinity in El Nino, Southern Oscillation (ENSO) predictions and their relationship to tropical sea surface temperatures, sea level, winds, and fresh water from rain. Results of the study are in the latest issue of the Journal of Geophysical Research - Oceans.

Ballabrera and his colleagues looked at data, from 1980 to 1995, about sea surface temperatures, winds, rainfall, evaporation, sea surface height, and latent heat, the energy released when water vapor condenses into droplets.

Using computer models, they performed a series of statistical predictions of the El Nino events for such a period. The results indicate short-term predictions only require monitoring sea surface temperatures, while predictions over a season require the observation of sea level. They concluded observations of salinity significantly improve predictions. When changes in salinity occur, they affect the El Nino event for the next six to 12 months. In this lag time, salinity changes have the potential to modify the layers of the ocean and affect the heat content of the western Pacific Ocean; the region where the unusual atmospheric and oceanic behavior associated to El Nino first develops. "As a result, when changes in ocean saltiness are considered, improvements are found in El Nino forecasts six to 12 months in advance," Ballabrera said.

"This research holds tremendous potential for the NASA Aquarius mission to monitor the surface salinity of the global ocean," Busalacchi said. Aquarius is scheduled for launch during 2006-2007. Aquarius will provide the first global maps of salt concentration on the ocean surface. Salt concentration is a key area of scientific uncertainty in the oceans’ capacity to store and transport heat, which in turn affects Earth’s climate and water cycle.

By using remote sensing data from satellites, scientists will be able to see changes in ocean salinity. Knowing the lag time factor, computer models simulating the movement of the atmosphere may be able to accurately predict El Nino episodes. This may lead to longer lead-time for predictions of ENSO events.

Florida State University, the National Center for Environmental Prediction, National Center for Atmospheric Research and the Etudes Climatiques de l’Ocean Pacifique tropical program at Institut de Recherche pour le Developpement, Centre de Noumea contributed ocean and atmosphere data to this study.

The National Oceanic and Atmospheric Administration’s El Nino Web Page:
http://www.pmel.noaa.gov/tao/elNino /Nino -home-low.html

Rob Gutro | NASA Goddard Space Flight Cente
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0114salt.html
http://essic.umd.edu/~joaquim/salinity/
http://www.pmel.noaa.gov/tao/elNino /Nino -home-low.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>