Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

cean surface saltiness influences el nino forecasts

30.01.2003




NASA sponsored scientists have discovered by knowing the salt content of the ocean’s surface, they may be able to improve the ability to predict El Nino events. Scientists, studying the western Pacific Ocean, find regional changes in the saltiness of surface ocean water correspond to changes in upper ocean heat content in the months preceding an El Nino event. Knowing the distribution of surface salinity may help predict events.

Salinity and temperature combine to dictate the ocean’s density. Greater salinity, like colder temperatures, results in an increase in ocean density with a corresponding depression of the sea surface height. In warmer, fresher waters, the density is lower resulting in an elevation of the sea surface. These ocean height differences are related to the circulation of the ocean.

The surface salinity in two regions contributes to El Nino events: an area of warmer temperatures and lower salinity in the western Pacific, and the higher salinity and cooler temperatures in the eastern Pacific. Differences in surface salinity are related to changes in temperature and upper ocean heat content, which are part of the El Nino phenomenon. They have the potential to influence the Earth’s climate through air-sea interaction at the ocean’s surface.



The study, conducted for NASA by University of Maryland researchers Joaquim Ballabrera, Tony Busalacchi, and Ragu Murtugudde, is one of the first to look at ocean salinity in El Nino, Southern Oscillation (ENSO) predictions and their relationship to tropical sea surface temperatures, sea level, winds, and fresh water from rain. Results of the study are in the latest issue of the Journal of Geophysical Research - Oceans.

Ballabrera and his colleagues looked at data, from 1980 to 1995, about sea surface temperatures, winds, rainfall, evaporation, sea surface height, and latent heat, the energy released when water vapor condenses into droplets.

Using computer models, they performed a series of statistical predictions of the El Nino events for such a period. The results indicate short-term predictions only require monitoring sea surface temperatures, while predictions over a season require the observation of sea level. They concluded observations of salinity significantly improve predictions. When changes in salinity occur, they affect the El Nino event for the next six to 12 months. In this lag time, salinity changes have the potential to modify the layers of the ocean and affect the heat content of the western Pacific Ocean; the region where the unusual atmospheric and oceanic behavior associated to El Nino first develops. "As a result, when changes in ocean saltiness are considered, improvements are found in El Nino forecasts six to 12 months in advance," Ballabrera said.

"This research holds tremendous potential for the NASA Aquarius mission to monitor the surface salinity of the global ocean," Busalacchi said. Aquarius is scheduled for launch during 2006-2007. Aquarius will provide the first global maps of salt concentration on the ocean surface. Salt concentration is a key area of scientific uncertainty in the oceans’ capacity to store and transport heat, which in turn affects Earth’s climate and water cycle.

By using remote sensing data from satellites, scientists will be able to see changes in ocean salinity. Knowing the lag time factor, computer models simulating the movement of the atmosphere may be able to accurately predict El Nino episodes. This may lead to longer lead-time for predictions of ENSO events.

Florida State University, the National Center for Environmental Prediction, National Center for Atmospheric Research and the Etudes Climatiques de l’Ocean Pacifique tropical program at Institut de Recherche pour le Developpement, Centre de Noumea contributed ocean and atmosphere data to this study.

The National Oceanic and Atmospheric Administration’s El Nino Web Page:
http://www.pmel.noaa.gov/tao/elNino /Nino -home-low.html

Rob Gutro | NASA Goddard Space Flight Cente
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0114salt.html
http://essic.umd.edu/~joaquim/salinity/
http://www.pmel.noaa.gov/tao/elNino /Nino -home-low.html

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>