Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth Scientists Forge New Understanding of Mountain-Building Dynamics

24.01.2003


Understanding how mountains form is critically important -- from volcanic eruptions to earthquakes to catastrophic mudslides, the geologic processes active in mountain belts affect human societies every day. Yet, even though mountains are on all continents and in all ocean basins, scientists still understand relatively little about the forces that interact to form and destroy mountains, how mountains change over time, and the relationship between mountains and Earth’s climate.


Photograph showing typical texture indicative of what was once magma within the central parts of a batholith (a large intrusion of magma into rock).
Credit: Photo courtesy of Keith Klepeis, University of Vermont; NSF


Unusually well exposed section of rock from Early Cretaceous continental crust located in Fiordland, New Zealand. (Section constructed by Keith Klepeis, University of Vermont)
Credit: Photo courtesy of Keith Klepeis, University of Vermont; NSF



To better understand these dynamics, earth scientists are now integrating studies across traditional disciplinary boundaries. In research funded by NSF and published in the January 2003 GSA Today, scientists have demonstrated a new way to integrate results from observations collected in the field with laboratory and experimental techniques. The team studied a mountain belt located in Fiordland, South Island, New Zealand.

"This integrative approach has allowed a better understanding of the processes [behind mountain building]," said Tracy Rushmer, a geologist at the University of Vermont and a co-author of the GSA Today paper. The findings have revealed processes that control the movement of magma, the impact of magma on rock deformation, and how the strength of the mountain belt changes through time, said Rushmer.


In Fiordland, where rocks from early mountain-building on Earth are exposed at the surface, the research has, "revealed the mechanisms by which magma was generated and transported through lower continental crust, and how these processes affected the formation of mountains over millions of years," said Rushmer.

Researchers know that mountains are the surface expression of plate tectonic forces -- forces that make our planet different from all others in the solar system. Tectonic forces are the dynamic link between processes active in the deep Earth, processes that change Earth’s surface, and the atmosphere that drives the hydrologic cycle and fosters life. Towering mountain ranges, such as the Himalayas, exist because rock is uplifted so quickly that erosion can not strip it away fast enough to level the peaks. Such an understanding is important, say geologists, because ultimately it will allow us to more accurately predict the Earth’s behavior.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip030123.htm

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>