Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars May Be Much Older – or Younger – than Thought, According to Research by UB Planetary Geologist

24.01.2003


Analysis of Martian volcanoes will help determine when Hesperian epoch began


This Martian map shows areas that UB researcher Tracy Gregg finds should no longer be considered Herperian: explosive volcanic deposits (light blue) are much older than the Hesperian epoch, whereas lava flows (red) probably are much younger.



Research by a University at Buffalo planetary geologist suggests that generally accepted estimates about the geologic age of surfaces on Mars -- which influence theories about its history and whether or not it once sustained life -- could be way off.

Funded by the National Aeronautics and Space Administration, the research eventually could overturn principles about the relative ages of different areas on the Red Planet that have not been questioned for nearly 20 years.


The findings also could cause scientists to reconsider the use of a critical tool -- counting impact craters created by meterorites -- that geologists use to estimate the age of planets they cannot visit in person.

"This has the potential to change everything we thought we knew about the age of different surfaces on Mars," said Tracy Gregg, Ph.D., assistant professor of geology at UB and chair of the Planetary Geology Division of the Geological Society of America. David Crown, Ph.D., of the Planetary Science Institute, is Gregg’s co-investigator on the grant.

Gregg’s research concerns an area on Mars called Hesperia Planum, which has been used since the 1980s to define the Hesperian epoch, the second of the planet’s three geologic time periods.

But in the past several years, recent analyses of images obtained from the Mars Orbiter Laser Altimeter, (MOLA), the Mars Orbiter Camera (MOC) and other instruments have led to new estimates for the duration of the Hesperian epoch, ranging from just 300,000 years to 1-2 billion years, Gregg explained.

While other planetary geologists now are attempting to reconcile these two models, she said, her focus is on trying to figure out which surfaces on Mars originated in the Hesperian epoch, research that, in turn, probably will help to further define the duration of the Hesperian epoch.

"For almost 20 years, Hesperia Planum has served as the basic time marker on Mars," said Gregg.

"When we want to identify how old rocks are without the benefit of samples, we count impact craters, the big holes in planetary surfaces that are made by meteorites that crash into them," explained Gregg. "The more impact craters there are on a surface, the older it is."

But during the course of Gregg’s research reviewing images of Tyrrhena Patera, a volcano located in the middle of Hesperia Planum, she began finding deposits from not one Martian geologic epoch but from several.

Gregg made her findings using images obtained from the Viking Orbiter, the Mars Global Surveyor, the MOLA and the MOC. She also will be using data NASA is making available from THEMIS, the Thermal Mapping Infrared Spectrometer, which measures surface temperatures on Mars.

"Hesperia Planum is not one age. Its surface actually is a combination of materials that are very old, materials that are very young and some that are in between," she said, "and the volcanoes there are the reason why."

Gregg recently has demonstrated that two volcanoes in western Hesperia Planum were active during a much longer period than previously was understood and that the products of the eruptions traveled much further, signaling a greater intensity of volcanic activity than originally was thought.

Her findings, she said, are similar to ones made about 20 years ago on Earth, when geologists discovered that Yellowstone National Park in Wyoming was the center crater of an enormous volcano and that its deposits stretched as far as the state of Illinois.

Those findings, she said, changed fundamentally the understanding of volcanic activity on Earth.

In a similar vein, she said, the new observations about the great distances traveled by deposits of Martian volcanoes and their influence on the age of surfaces may cause a similar reconsideration of understanding of the history of Mars.

"I think that we are about to discover that Hesperia Planum, this surface that has acted as a basic time marker for Mars, has a very different age than we thought," she said. "If it turns out it’s much older than we thought, then it means that the system shut down a lot earlier and the chances of finding active living organisms on Mars are much slimmer.

"If, on the other hand, it turns out to be much younger, then it means Mars still may be volcanologically active, and if it is, that increases the possibility of extant life on Mars."

Contact: Ellen Goldbaum, goldbaum@buffalo.edu
Phone: 716-645-5000 ext 1415
Fax: 716-645-3765

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=60460009

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>