Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars May Be Much Older – or Younger – than Thought, According to Research by UB Planetary Geologist

24.01.2003


Analysis of Martian volcanoes will help determine when Hesperian epoch began


This Martian map shows areas that UB researcher Tracy Gregg finds should no longer be considered Herperian: explosive volcanic deposits (light blue) are much older than the Hesperian epoch, whereas lava flows (red) probably are much younger.



Research by a University at Buffalo planetary geologist suggests that generally accepted estimates about the geologic age of surfaces on Mars -- which influence theories about its history and whether or not it once sustained life -- could be way off.

Funded by the National Aeronautics and Space Administration, the research eventually could overturn principles about the relative ages of different areas on the Red Planet that have not been questioned for nearly 20 years.


The findings also could cause scientists to reconsider the use of a critical tool -- counting impact craters created by meterorites -- that geologists use to estimate the age of planets they cannot visit in person.

"This has the potential to change everything we thought we knew about the age of different surfaces on Mars," said Tracy Gregg, Ph.D., assistant professor of geology at UB and chair of the Planetary Geology Division of the Geological Society of America. David Crown, Ph.D., of the Planetary Science Institute, is Gregg’s co-investigator on the grant.

Gregg’s research concerns an area on Mars called Hesperia Planum, which has been used since the 1980s to define the Hesperian epoch, the second of the planet’s three geologic time periods.

But in the past several years, recent analyses of images obtained from the Mars Orbiter Laser Altimeter, (MOLA), the Mars Orbiter Camera (MOC) and other instruments have led to new estimates for the duration of the Hesperian epoch, ranging from just 300,000 years to 1-2 billion years, Gregg explained.

While other planetary geologists now are attempting to reconcile these two models, she said, her focus is on trying to figure out which surfaces on Mars originated in the Hesperian epoch, research that, in turn, probably will help to further define the duration of the Hesperian epoch.

"For almost 20 years, Hesperia Planum has served as the basic time marker on Mars," said Gregg.

"When we want to identify how old rocks are without the benefit of samples, we count impact craters, the big holes in planetary surfaces that are made by meteorites that crash into them," explained Gregg. "The more impact craters there are on a surface, the older it is."

But during the course of Gregg’s research reviewing images of Tyrrhena Patera, a volcano located in the middle of Hesperia Planum, she began finding deposits from not one Martian geologic epoch but from several.

Gregg made her findings using images obtained from the Viking Orbiter, the Mars Global Surveyor, the MOLA and the MOC. She also will be using data NASA is making available from THEMIS, the Thermal Mapping Infrared Spectrometer, which measures surface temperatures on Mars.

"Hesperia Planum is not one age. Its surface actually is a combination of materials that are very old, materials that are very young and some that are in between," she said, "and the volcanoes there are the reason why."

Gregg recently has demonstrated that two volcanoes in western Hesperia Planum were active during a much longer period than previously was understood and that the products of the eruptions traveled much further, signaling a greater intensity of volcanic activity than originally was thought.

Her findings, she said, are similar to ones made about 20 years ago on Earth, when geologists discovered that Yellowstone National Park in Wyoming was the center crater of an enormous volcano and that its deposits stretched as far as the state of Illinois.

Those findings, she said, changed fundamentally the understanding of volcanic activity on Earth.

In a similar vein, she said, the new observations about the great distances traveled by deposits of Martian volcanoes and their influence on the age of surfaces may cause a similar reconsideration of understanding of the history of Mars.

"I think that we are about to discover that Hesperia Planum, this surface that has acted as a basic time marker for Mars, has a very different age than we thought," she said. "If it turns out it’s much older than we thought, then it means that the system shut down a lot earlier and the chances of finding active living organisms on Mars are much slimmer.

"If, on the other hand, it turns out to be much younger, then it means Mars still may be volcanologically active, and if it is, that increases the possibility of extant life on Mars."

Contact: Ellen Goldbaum, goldbaum@buffalo.edu
Phone: 716-645-5000 ext 1415
Fax: 716-645-3765

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=60460009

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>