Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars May Be Much Older – or Younger – than Thought, According to Research by UB Planetary Geologist

24.01.2003


Analysis of Martian volcanoes will help determine when Hesperian epoch began


This Martian map shows areas that UB researcher Tracy Gregg finds should no longer be considered Herperian: explosive volcanic deposits (light blue) are much older than the Hesperian epoch, whereas lava flows (red) probably are much younger.



Research by a University at Buffalo planetary geologist suggests that generally accepted estimates about the geologic age of surfaces on Mars -- which influence theories about its history and whether or not it once sustained life -- could be way off.

Funded by the National Aeronautics and Space Administration, the research eventually could overturn principles about the relative ages of different areas on the Red Planet that have not been questioned for nearly 20 years.


The findings also could cause scientists to reconsider the use of a critical tool -- counting impact craters created by meterorites -- that geologists use to estimate the age of planets they cannot visit in person.

"This has the potential to change everything we thought we knew about the age of different surfaces on Mars," said Tracy Gregg, Ph.D., assistant professor of geology at UB and chair of the Planetary Geology Division of the Geological Society of America. David Crown, Ph.D., of the Planetary Science Institute, is Gregg’s co-investigator on the grant.

Gregg’s research concerns an area on Mars called Hesperia Planum, which has been used since the 1980s to define the Hesperian epoch, the second of the planet’s three geologic time periods.

But in the past several years, recent analyses of images obtained from the Mars Orbiter Laser Altimeter, (MOLA), the Mars Orbiter Camera (MOC) and other instruments have led to new estimates for the duration of the Hesperian epoch, ranging from just 300,000 years to 1-2 billion years, Gregg explained.

While other planetary geologists now are attempting to reconcile these two models, she said, her focus is on trying to figure out which surfaces on Mars originated in the Hesperian epoch, research that, in turn, probably will help to further define the duration of the Hesperian epoch.

"For almost 20 years, Hesperia Planum has served as the basic time marker on Mars," said Gregg.

"When we want to identify how old rocks are without the benefit of samples, we count impact craters, the big holes in planetary surfaces that are made by meteorites that crash into them," explained Gregg. "The more impact craters there are on a surface, the older it is."

But during the course of Gregg’s research reviewing images of Tyrrhena Patera, a volcano located in the middle of Hesperia Planum, she began finding deposits from not one Martian geologic epoch but from several.

Gregg made her findings using images obtained from the Viking Orbiter, the Mars Global Surveyor, the MOLA and the MOC. She also will be using data NASA is making available from THEMIS, the Thermal Mapping Infrared Spectrometer, which measures surface temperatures on Mars.

"Hesperia Planum is not one age. Its surface actually is a combination of materials that are very old, materials that are very young and some that are in between," she said, "and the volcanoes there are the reason why."

Gregg recently has demonstrated that two volcanoes in western Hesperia Planum were active during a much longer period than previously was understood and that the products of the eruptions traveled much further, signaling a greater intensity of volcanic activity than originally was thought.

Her findings, she said, are similar to ones made about 20 years ago on Earth, when geologists discovered that Yellowstone National Park in Wyoming was the center crater of an enormous volcano and that its deposits stretched as far as the state of Illinois.

Those findings, she said, changed fundamentally the understanding of volcanic activity on Earth.

In a similar vein, she said, the new observations about the great distances traveled by deposits of Martian volcanoes and their influence on the age of surfaces may cause a similar reconsideration of understanding of the history of Mars.

"I think that we are about to discover that Hesperia Planum, this surface that has acted as a basic time marker for Mars, has a very different age than we thought," she said. "If it turns out it’s much older than we thought, then it means that the system shut down a lot earlier and the chances of finding active living organisms on Mars are much slimmer.

"If, on the other hand, it turns out to be much younger, then it means Mars still may be volcanologically active, and if it is, that increases the possibility of extant life on Mars."

Contact: Ellen Goldbaum, goldbaum@buffalo.edu
Phone: 716-645-5000 ext 1415
Fax: 716-645-3765

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=60460009

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>