Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-lost records confirm rising sea level

21.01.2003


The discovery of 160 year old records in the archives of the Royal Society, London, has given scientists further evidence that Australian sea levels are rising.



Observations taken at Tasmania’s Port Arthur convict settlement 160 years ago by an amateur meteorologist have been compared with data from a modern tide gauge.

"There is a rate of sea level rise of about 1mm a year, consistent with other Australian observations," says Dr David Pugh, from the UK’s Southampton Oceanography Centre.


"This is an important result for the Southern Hemisphere, and especially for Australia, providing a benchmark against which Australian regional sea level can be measured in 10, 50 or 100 years time," says Dr Pugh.

Working with Dr Pugh on the three year project were the University of Tasmania’s Dr John Hunter, Dr Richard Coleman and Mr Chris Watson.

In 1837, a rudimentary tide gauge was made by the amateur meteorologist, Thomas Lempriere and probably installed in the nearby Port Arthur settlement.

In 1841 Lempriere cut a benchmark, in the form of a broad arrow, on a vertical rock face on the Isle of the Dead, which was used as a cemetery for the Port Arthur complex.

The discovery of two full years of carefully recorded measurements (1841 and 1842) of average sea level was the start of a scientific quest through early European history in Tasmania.

CSIRO oceanographer Dr Bruce Hamon, researching Lempriere’s work in 1985, concluded that the surviving benchmark would not be of scientific value today.

"The position of course would be different if Lempriere’s original observations ever came to light," Dr Hamon wrote.

In addition to discovering the ’lost’ files, the project involved analysis of 19th century sea level data, and a suite of modern measurement and analysis techniques.

Dr Hunter said that scientific and popular interest in possible rises of global sea level, with attendant increased risks of coastal flooding have emphasised the need for a long time series of sea level measurements.

"Unfortunately, few records exist from the nineteenth century, and even fewer have well documented benchmark information against which changes can be monitored.

"At Port Arthur we have a unique series of sea level measurements.

"Our research during this project has shown that the work of John Franklin, James Clark Ross and Thomas Lempriere generated a significant benchmark long before any effect of global warming was apparent.

"The scientific interest at the time was the question of vertical motion or uplifting of the continents rather than changes in volume of the oceans.

"Our observations are consistent with the lower end of estimates by the Intergovernmental Panel on Climate Change and with records from Fremantle and Fort Denison," Dr Hunter said.

Measurements have been taken at Fremantle for 91 years and at Fort Denison, Sydney for 82 years.

The project was funded by the Southampton Oceanography Centre, CSIRO, the University of Canberra and the University of Tasmania. The results of the study have been published in the International Hydrological Review.

More information from:

Dr John Hunter, University of Tasmania, 03-62262999
Dr Donna Roberts, 03-62262265 or Craig Macaulay, mobile: 0419-966-465
Leane Regan, CSIRO Media 02 6276, 6513, mobile: 0419 236 519


Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prrecord

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>