Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lightning really does strike more than twice


NASA-funded scientists have recently learned that cloud-to-ground lightning frequently strikes the ground in two or more places and that the chances of being struck are about 45 percent higher than what people commonly assume.

Recently, William C. Valine and E. Philip Krider in the Institute of Atmospheric Physics at the University of Arizona, co-authors of the study, took to the field using video and other technology to study lightning, which is one of the biggest weather-related killers in the United States, superseded only by extreme heat and flooding.

They recorded 386 cloud-to-ground (CG) lightning flashes on videotape during the summer of 1997 in Tucson, Arizona. They found that within their sample of 386 flashes, 136 flashes (35 percent) struck the ground in two or more places that were separated by tens of meters (yards) or more. There were a total of 558 different strike points; therefore, on average, each cloud-to-ground flash struck the ground in 1.45 places.

"Most people assume that lightning strikes in only one place. In this research, we’ve documented that lightning definitely strikes more than one place about a third of the time," Krider said. "If you want to quantify the chances of being struck by lightning, they are about 45 percent higher than the number of flashes because, on average, there are about 1.45 strike points per CG flash."

Within that group of 136 flashes, termed "multiple channel flashes," 88 had two or more separate and distinct channels (or paths) between the cloud base and the ground. Thirty-seven of the flashes forked below the cloud base and struck ground in two or more places. Eleven flashes exhibited both types of behavior. In other words, during the observations in Arizona, for every fork below the cloud there were approximately twice as many flashes that had separate and distinct paths, a ratio that is consistent with previous measurements in Florida.

Valine and Krider also confirmed that after an initial stroke, 67 percent of the new strike points were produced by the second stroke in the flash, rather than the third or fourth stroke. In other words, if any subsequent stroke is going to strike a place different from the first stroke, it is usually the second stroke that does so. The third and fourth strokes usually follow the same path as the second stroke.

Lightning occurs when there is a discharge of electricity between large volumes of excess positive and negative charge that accumulate in thunder clouds. Lightning most commonly occurs in thunderstorms, but it also can occur in snowstorms, sandstorms, in the ejected material over volcanoes. Most lightning takes place within or between clouds; on average, only about one-third of all discharges actually strike the ground. The peak temperature in a lightning channel is around 60,000 degrees Fahrenheit, or about 5 times hotter than the surface of the Sun.

According to the National Weather Service, lightning causes an average of 93 deaths and 300 injuries in the United States each year. The National Severe Storms Laboratory recommends that a safe distance from a previous flash is at least 10 to 13 km (6 to 8 miles) as opposed to the 3 to 5 km (2-3 miles) that experts had previously advised.

The article appears in the latest print issue of the American Geophysical Union’s Journal of Geophysical Research - Atmospheres, and publication of the results was funded entirely by NASA.

For additional information and images, see:

For more information about lightning and lightning safety, see:

The National Severe Storms Laboratory on Lightning:

Global Hydrology and Climate Center (GHCC) Lightning Team:

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>