Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightning really does strike more than twice

16.01.2003


NASA-funded scientists have recently learned that cloud-to-ground lightning frequently strikes the ground in two or more places and that the chances of being struck are about 45 percent higher than what people commonly assume.




Recently, William C. Valine and E. Philip Krider in the Institute of Atmospheric Physics at the University of Arizona, co-authors of the study, took to the field using video and other technology to study lightning, which is one of the biggest weather-related killers in the United States, superseded only by extreme heat and flooding.

They recorded 386 cloud-to-ground (CG) lightning flashes on videotape during the summer of 1997 in Tucson, Arizona. They found that within their sample of 386 flashes, 136 flashes (35 percent) struck the ground in two or more places that were separated by tens of meters (yards) or more. There were a total of 558 different strike points; therefore, on average, each cloud-to-ground flash struck the ground in 1.45 places.


"Most people assume that lightning strikes in only one place. In this research, we’ve documented that lightning definitely strikes more than one place about a third of the time," Krider said. "If you want to quantify the chances of being struck by lightning, they are about 45 percent higher than the number of flashes because, on average, there are about 1.45 strike points per CG flash."

Within that group of 136 flashes, termed "multiple channel flashes," 88 had two or more separate and distinct channels (or paths) between the cloud base and the ground. Thirty-seven of the flashes forked below the cloud base and struck ground in two or more places. Eleven flashes exhibited both types of behavior. In other words, during the observations in Arizona, for every fork below the cloud there were approximately twice as many flashes that had separate and distinct paths, a ratio that is consistent with previous measurements in Florida.

Valine and Krider also confirmed that after an initial stroke, 67 percent of the new strike points were produced by the second stroke in the flash, rather than the third or fourth stroke. In other words, if any subsequent stroke is going to strike a place different from the first stroke, it is usually the second stroke that does so. The third and fourth strokes usually follow the same path as the second stroke.

Lightning occurs when there is a discharge of electricity between large volumes of excess positive and negative charge that accumulate in thunder clouds. Lightning most commonly occurs in thunderstorms, but it also can occur in snowstorms, sandstorms, in the ejected material over volcanoes. Most lightning takes place within or between clouds; on average, only about one-third of all discharges actually strike the ground. The peak temperature in a lightning channel is around 60,000 degrees Fahrenheit, or about 5 times hotter than the surface of the Sun.

According to the National Weather Service, lightning causes an average of 93 deaths and 300 injuries in the United States each year. The National Severe Storms Laboratory recommends that a safe distance from a previous flash is at least 10 to 13 km (6 to 8 miles) as opposed to the 3 to 5 km (2-3 miles) that experts had previously advised.

The article appears in the latest print issue of the American Geophysical Union’s Journal of Geophysical Research - Atmospheres, and publication of the results was funded entirely by NASA.

For additional information and images, see: http://www.gsfc.nasa.gov/topstory/2003/0107lightning.html

For more information about lightning and lightning safety, see: http://www.erh.noaa.gov/er/cae/svrwx/ltg.htm

The National Severe Storms Laboratory on Lightning: http://www.nssl.noaa.gov/researchitems/lightning.shtml

Global Hydrology and Climate Center (GHCC) Lightning Team:
http://thunder.msfc.nasa.gov/

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0107lightning.html
http://www.erh.noaa.gov/er/cae/svrwx/ltg.htm
http://www.nssl.noaa.gov/researchitems/lightning.shtml

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>