Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA scientists take first ’full-body scan’ of evolving thunderstorm

16.01.2003



A doctor gets a better view inside a patient by probing the body with CAT and MRI scanning equipment. Now, NASA meteorologists have done a kind of "full-body scan" of an evolving thunderstorm in the tropics, using advanced radar equipment to provide a remarkable picture of the storm’s anatomy. The observations are expected to help double-check satellite rainfall measurements, improve computer models of storms, and make the skies safer for airplanes to navigate.

David Atlas of NASA’s Goddard Space Flight Center, Greenbelt, Md., has gathered the data collected from an unusual storm over the Amazon rainforest in February 1999 and arranged it into an intriguing image of the storm clouds’ inner workings.

The research, co-authored by University of Colorado’s Christopher Williams, appears in the January 2003 American Meteorological Society’s Journal of the Atmospheric Sciences.



Storms often form precipitation in one of two ways, either by forming rain at lower altitudes or by forming frozen particles higher in the atmosphere. But this storm was unusual in that both processes operated as the storm evolved.

In the tropics, the air is warm even at considerably high altitudes, so rain can occur in high clouds by forming liquid droplets without freezing first. During the warm rain stage only the larger drops fall quickly enough to overcome the strength of the updraft, but the smaller ones are carried very high into the clouds, where they freeze into snow and hail. This storm possessed a very strong updraft and also formed frozen precipitation in its upper levels even as rain fell closer to the ground.

"While such a two-phase process should occur in many vigorous storms, it has rarely been observed in a single storm," Atlas said.

"The ’full-body scan’ also provides new insight into the intensity and hazards within storms, which should be avoided by aircraft. Even the aircraft used in this study did not go into the core of the storm because of the hazards," Atlas said.

At the higher altitudes, cold temperatures created larger frozen particles that were able to fall through the updraft. The smaller ones continued to rise, colliding with the larger falling ones. These collisions caused friction and electrical charges that generated lightning.

Radar was the primary means by which the "body scan" was taken. A team of scientists from NASA, the National Oceanic and Atmospheric Administration (NOAA), the National Center for Atmospheric Research (NCAR), and other universities used radar equipment sensitive enough to detect the different kinds of particles from the storm’s base up to its top, some 14 km (8.7 miles) above the jungle floor.

Different types of radar examined different aspects of the storm. These included a scanning Doppler radar, often seen on television weather broadcasts, but specially designed with the capability to measure particle types and sizes and rain rates, provided by NCAR; and a vertically oriented Doppler radar, which measures particle motion and size, and vertical air motions, supplied by NOAA. The analysis was also greatly aided by measurements within the storm made by a jet aircraft operated by the University of North Dakota. NASA provided funds for the use of the two radars and the operation of the jet aircraft during this field experiment."

One purpose of the study was to validate the Tropical Rainfall Measuring Mission (TRMM) satellite measurements. Satellites like TRMM provide data about how these storms operate and help atmospheric scientists better understand how wind circulates above the planet. A continuous array of these evolving tropical thunderstorms around the world acts as a heat engine that warms the upper atmosphere. That warming maintains a gradient of temperature and pressure from the tropics to the poles, and driving the global wind circulation.

"Our particular study attempted to validate what the satellites were showing us with an up-close view," Atlas said. The validation of TRMM data will help to fine-tune and set the stage for the Global Precipitation Mission (GPM) satellite, which is planned to succeed TRMM.

This research was funded in part by NASA’s Tropical Rainfall Measuring- Mission.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20021215convective.html

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>