Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA scientists take first ’full-body scan’ of evolving thunderstorm

16.01.2003



A doctor gets a better view inside a patient by probing the body with CAT and MRI scanning equipment. Now, NASA meteorologists have done a kind of "full-body scan" of an evolving thunderstorm in the tropics, using advanced radar equipment to provide a remarkable picture of the storm’s anatomy. The observations are expected to help double-check satellite rainfall measurements, improve computer models of storms, and make the skies safer for airplanes to navigate.

David Atlas of NASA’s Goddard Space Flight Center, Greenbelt, Md., has gathered the data collected from an unusual storm over the Amazon rainforest in February 1999 and arranged it into an intriguing image of the storm clouds’ inner workings.

The research, co-authored by University of Colorado’s Christopher Williams, appears in the January 2003 American Meteorological Society’s Journal of the Atmospheric Sciences.



Storms often form precipitation in one of two ways, either by forming rain at lower altitudes or by forming frozen particles higher in the atmosphere. But this storm was unusual in that both processes operated as the storm evolved.

In the tropics, the air is warm even at considerably high altitudes, so rain can occur in high clouds by forming liquid droplets without freezing first. During the warm rain stage only the larger drops fall quickly enough to overcome the strength of the updraft, but the smaller ones are carried very high into the clouds, where they freeze into snow and hail. This storm possessed a very strong updraft and also formed frozen precipitation in its upper levels even as rain fell closer to the ground.

"While such a two-phase process should occur in many vigorous storms, it has rarely been observed in a single storm," Atlas said.

"The ’full-body scan’ also provides new insight into the intensity and hazards within storms, which should be avoided by aircraft. Even the aircraft used in this study did not go into the core of the storm because of the hazards," Atlas said.

At the higher altitudes, cold temperatures created larger frozen particles that were able to fall through the updraft. The smaller ones continued to rise, colliding with the larger falling ones. These collisions caused friction and electrical charges that generated lightning.

Radar was the primary means by which the "body scan" was taken. A team of scientists from NASA, the National Oceanic and Atmospheric Administration (NOAA), the National Center for Atmospheric Research (NCAR), and other universities used radar equipment sensitive enough to detect the different kinds of particles from the storm’s base up to its top, some 14 km (8.7 miles) above the jungle floor.

Different types of radar examined different aspects of the storm. These included a scanning Doppler radar, often seen on television weather broadcasts, but specially designed with the capability to measure particle types and sizes and rain rates, provided by NCAR; and a vertically oriented Doppler radar, which measures particle motion and size, and vertical air motions, supplied by NOAA. The analysis was also greatly aided by measurements within the storm made by a jet aircraft operated by the University of North Dakota. NASA provided funds for the use of the two radars and the operation of the jet aircraft during this field experiment."

One purpose of the study was to validate the Tropical Rainfall Measuring Mission (TRMM) satellite measurements. Satellites like TRMM provide data about how these storms operate and help atmospheric scientists better understand how wind circulates above the planet. A continuous array of these evolving tropical thunderstorms around the world acts as a heat engine that warms the upper atmosphere. That warming maintains a gradient of temperature and pressure from the tropics to the poles, and driving the global wind circulation.

"Our particular study attempted to validate what the satellites were showing us with an up-close view," Atlas said. The validation of TRMM data will help to fine-tune and set the stage for the Global Precipitation Mission (GPM) satellite, which is planned to succeed TRMM.

This research was funded in part by NASA’s Tropical Rainfall Measuring- Mission.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20021215convective.html

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>