Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover global warming linked to increase in tropopause height over past two decades

06.01.2003


Researchers at the Lawrence Livermore National Laboratory have discovered another fingerprint of human effects on global climate.



Recent research has shown that increases in the height of the tropopause over the past two decades are directly linked to ozone depletion and increased greenhouse gases.

The tropopause is the transition zone between the lowest layer of the atmosphere -- the turbulently-mixed troposphere -- and the more stable stratosphere. The tropopause lies roughly 10 miles above the Earth’s surface at the equator and five miles above the poles. To date, no scientist has examined whether observed changes in tropopause height are in accord with projections from climate model greenhouse warming experiments.


The comparison was made by Livermore scientists Benjamin Santer, James Boyle, Krishna AchutaRao, Charles Doutriaux and Karl Taylor, along with researchers from the National Center for Atmospheric Research, NASA Goddard Institute for Space Studies, the Max-Planck Institute for Meteorology and the Institut für Physik der Atmosphäre in Germany. Their findings are reported in the today’s (Jan. 3) online edition of the Journal of Geophysical Research-Atmospheres.

This research undercuts claims by greenhouse skeptics that no warming has occurred during the last two decades. Such claims are based on satellite measurements of temperatures in the troposphere, which show little or no warming since the beginning of the satellite record in 1979.

"Weather balloons and weather forecast models show that there’s been a pronounced increase in the height of the global tropopause over the last two decades," Santer said. "Our best understanding is that this increase is due to two factors: warming of troposphere, which is caused by increasing greenhouse gases, and cooling of the stratosphere, which is mainly caused by depletion of stratospheric ozone. Tropopause height changes give us independent evidence of the reality of recent warming of the troposphere."

The Livermore research supports the bottom-line conclusion of the 2001 Intergovernmental Panel on Climate Change (IPCC), which states that, "most of the observed warming over the last 50 years is likely to have been due to the increase in greenhouse gas concentrations."

Earlier research showed that changes in the Earth’s surface temperature, ocean heat content, and Northern Hemisphere sea ice cover are other indicators of human effects on climate change.

"The climate system is telling us a consistent story -- that humans have had a significant effect on it," Santer said. "We’re seeing detailed correspondence between computer climate models and observations, and this correspondence is in a number of different climate variables. Tropopause height is the latest piece of the climate-change puzzle."

To support the research, Livermore scientists examined tropopause height changes in climate-change experiments using two different computer climate models. Both models showed similar decadal-scale increases in the tropopause height in response to changes in human-caused climate forcings. The patterns of tropopause height change were similar in models and so-called ’reanalysis’ products (a combination of actual observations and results from a weather forecast model).

The model experiments focused on both manmade climate forcings, such as changes in well-mixed greenhouse gases, stratospheric and tropospheric ozone, and on natural forcings, such as changes in volcanic aerosols. The forces have varying effects on atmospheric temperature, that in turn affect tropopause height, the report concludes.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>