Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore researchers determine biosphere unaffected by geoengineering schemes

20.12.2002


Using models that simulate the interaction between global climate and land ecosystems, atmospheric scientists from the Lawrence Livermore National Laboratory have shown that compensating for the carbon dioxide "greenhouse effect" by decreasing the amount of sunlight reaching the planet (geoengineering) could create a more vigorous ecosystem while helping to curb global warming.



The study suggests that planetary-scale engineering projects to lessen the amount of solar radiation reaching the Earth’s surface will likely do little to prevent the effects of increased greenhouse gases on the terrestrial biosphere. In fact, plants could experience growth spurts.

In a paper entitled: "Impact of Geoengineering Schemes on the Terrestrial Biosphere," Livermore researchers Bala Govindasamy, Starley Thompson, Philip Duffy, Ken Caldeira and University of Wisconsin collaborator Christine Delire, modeled the impact on Earth’s land biosphere due to various schemes that would reduce the amount of sunlight reaching the planet’s surface. The research appears in the Nov. 26 online edition of Geophysical Research Letters.


"Our models show plant life getting a big boost from the carbon dioxide fertilization when atmospheric CO2 levels are doubled due to anthropogenic fossil fuel emissions," Govindasamy said. "We noticed that in a CO2-enriched world, the terrestrial biosphere was largely unaffected by decreases in surface solar radiation by a couple of percentage points through various geoengineering schemes."

In earlier research, scientists have maintained that greenhouse gases emitted from the burning of fossil fuels are one of the largest sources of global warming because they cause an increase in the amount of carbon dioxide in the atmosphere. Methods to reduce atmospheric carbon dioxide vary from storing it in the deep ocean to reducing the amount of sunlight reaching the planet (geoengineering) that could largely counteract the warming influence of more greenhouse gases.

"Critics suggested that ’turning down the sun’ could harm terrestrial ecosystems that depend on light for photosynthesis, but this new work shows that a change in solar flux to stabilize climate would have little effect on the terrestrial biosphere," Caldeira said. "In fact, turning down the sun a bit reduces evaporation and therefore gives the plants more water for photosynthesis so that they may actually grow better in a geoengineered world than they do today."

The researchers, however, strongly caution against adopting any geoengineering scheme because "there are many reasons why geoengineering is not a preferred option for climate stabilization." Among these are the risks of system failure and unpredictable responses of Earth’s climate system to large-scale human intervention ecosystems.

"First, geoengineering schemes impose a variety of technical, political and economic challenges. International consensus to develop and maintain the schemes would be difficult. Failure of a scheme could be catastrophic," said Govindasamy said. "CO2 fertilization could impact ecosystem goods and services not represented by our land biosphere model, such as plant species abundance and competition, habitat loss, biodiversity and other disturbances."

The LLNL-led group used a general circulation model coupled to a model of land vegetation to conclude that the change in solar flux needed to stabilize climate would have little effect on net primary productivity in land.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.


Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>