Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover extreme lake - and 3000-year-old microbes - in Mars-like antarctic environment

17.12.2002


Researchers sawing an observation hole in the permanent lake ice of a dry valley lake.
Image courtesy of the Priscu Research Group, Montana State University at Bozeman


Small segment of ice core from Lake Vida showing a layer of sediment. Researchers have discovered that the microbes are found with the sediment.
Image courtesy of the Priscu Research Group, Montana State University at Bozeman


NSF-supported researchers drilling into Lake Vida, an Antarctic "ice-block" lake, have found the lake isn’t really an ice block at all. In the December 16 issue of the Proceedings of the National Academy of Sciences, the team reveals that Antarctic Lake Vida may represent a previously unknown ecosystem, a frigid, "ice-sealed," lake that contains the thickest non-glacial lake ice cover on Earth and water seven times saltier than seawater.

Because of the arid, chilled environment in which it resides, scientists believe the lake may be an important template for the search for evidence of ancient microbial life on Mars and other icy worlds.

Researchers previously thought Vida was one of several Antarctic lakes that are frozen to their beds year-round. However, using ground-penetrating radar, ice core analyses, and long-term temperature data, the researchers now show that Vida has a thick light-blocking ice cover, a vast amount of ancient organic material and sediment, and a cold, super-salty, liquid zone underlying the ice - an environment that remains liquid at temperatures under -10°C, well below the freezing point of pure water.



Peter Doran of the University of Illinois at Chicago conducted the research along with colleagues at the Desert Research Institute in Reno, Nevada; NASA’s Ames Research Center in Moffett Field, California; and Montana State University in Bozeman.

The researchers extracted two ice cores from Lake Vida in early Antarctic spring (October) 1996. With an electromechanical drill, team members spent two weeks at temperatures below -35°C drilling a 10-cm-diameter core through 16-m of ice cover.

The researchers filled both of the holes with deionized water (to seal the columns with an ice plug), emplacing temperature measuring instruments in one of the shafts.

"The sediment within the ice made coring extremely difficult and required frequent bit changes and a complete motor replacement at one stage," said John Priscu of Montana State University.

"It was some very cold drilling," added Doran. "We were there for two weeks at temperatures approaching -40°C . . . camping. The drillers had a hard time getting through the sediment layers. They were used to drilling clean ice up on the polar plateau; the dirt in the ice tended to dull the cutting bits."

Despite these difficulties, said Priscu, the core segments collected provided new insights to a previously undescribed Antarctic ecosystem.

From the cores, the scientists found a layered chemical and biological history preserved in the ice, and revived viable microbes that are at least 2,800 years old.

"The ice covers of these lakes represent an oasis for life in an environment previously thought to be inhospitable," said Priscu. "These life forms may possess novel ice-active substances such as antifreezes and ice nucleation inhibitors that allow the organisms to survive the freeze-thaw cycles and come back to life when exposed to liquid water," he said.

"Importantly, the cold temperatures preserve DNA extremely well making them perfect ’ice museums’ for the study of ancient DNA," Priscu added. Research on the ancient DNA will provide an evolutionary and functional history of the microorganisms, he said, and he believes the findings might help scientists draw implications for the type of life that may exist in Lake Vostok, a huge lake which lies more than 4 km beneath the East Antarctic Ice Sheet.

Lake Vida, more than 5 km long, is one of the largest in the cold Antarctic desert region known as the McMurdo Dry Valleys. The area receives less than 10 cm of snow per year and the average annual temperature hovers around -30°C.

Using data from the ice sensors and from an automatic meteorological station on the shore of the lake, the researchers created a thermodynamic model to understand the complex melting and freezing processes within Vida.

The model provided a better understanding of the evolution of the ice cover and the underlying salt water. The freezing, growing ice cover concentrates the salt, thereby depressing the freezing point of the water, and extending the viability of a lake ecosystem.

"Lake Vida provides insight into a novel terrestrial ecosystem," said Doran. "What happened at Lake Vida may have been the fate of other Antarctic lakes, during even colder times, and more tropical aquatic ecosystems during extreme global glaciations of the past, such as the ’snowball Earth’ 550 Million years ago."

The researchers believe that Lake Vida may also offer clues to likely environments for finding signs of ancient, Martian, microbial life. Said Doran, "Mars is believed to have a water rich past, and if life developed, a Lake Vida-type ecosystem may have been the final niche for life on Mars before the water bodies froze solid."

The research was carried out as part of NSF’s McMurdo Long Term Ecological Research (LTER) project, and was also funded in part by NASA’s Exobiology program.

Josh Chamot, | NSF
Further information:
http://huey.colorado.edu/LTER/
http://www.nsf.gov/od/lpa/news/02/pr02100.htm

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>