Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover extreme lake - and 3000-year-old microbes - in Mars-like antarctic environment

17.12.2002


Researchers sawing an observation hole in the permanent lake ice of a dry valley lake.
Image courtesy of the Priscu Research Group, Montana State University at Bozeman


Small segment of ice core from Lake Vida showing a layer of sediment. Researchers have discovered that the microbes are found with the sediment.
Image courtesy of the Priscu Research Group, Montana State University at Bozeman


NSF-supported researchers drilling into Lake Vida, an Antarctic "ice-block" lake, have found the lake isn’t really an ice block at all. In the December 16 issue of the Proceedings of the National Academy of Sciences, the team reveals that Antarctic Lake Vida may represent a previously unknown ecosystem, a frigid, "ice-sealed," lake that contains the thickest non-glacial lake ice cover on Earth and water seven times saltier than seawater.

Because of the arid, chilled environment in which it resides, scientists believe the lake may be an important template for the search for evidence of ancient microbial life on Mars and other icy worlds.

Researchers previously thought Vida was one of several Antarctic lakes that are frozen to their beds year-round. However, using ground-penetrating radar, ice core analyses, and long-term temperature data, the researchers now show that Vida has a thick light-blocking ice cover, a vast amount of ancient organic material and sediment, and a cold, super-salty, liquid zone underlying the ice - an environment that remains liquid at temperatures under -10°C, well below the freezing point of pure water.



Peter Doran of the University of Illinois at Chicago conducted the research along with colleagues at the Desert Research Institute in Reno, Nevada; NASA’s Ames Research Center in Moffett Field, California; and Montana State University in Bozeman.

The researchers extracted two ice cores from Lake Vida in early Antarctic spring (October) 1996. With an electromechanical drill, team members spent two weeks at temperatures below -35°C drilling a 10-cm-diameter core through 16-m of ice cover.

The researchers filled both of the holes with deionized water (to seal the columns with an ice plug), emplacing temperature measuring instruments in one of the shafts.

"The sediment within the ice made coring extremely difficult and required frequent bit changes and a complete motor replacement at one stage," said John Priscu of Montana State University.

"It was some very cold drilling," added Doran. "We were there for two weeks at temperatures approaching -40°C . . . camping. The drillers had a hard time getting through the sediment layers. They were used to drilling clean ice up on the polar plateau; the dirt in the ice tended to dull the cutting bits."

Despite these difficulties, said Priscu, the core segments collected provided new insights to a previously undescribed Antarctic ecosystem.

From the cores, the scientists found a layered chemical and biological history preserved in the ice, and revived viable microbes that are at least 2,800 years old.

"The ice covers of these lakes represent an oasis for life in an environment previously thought to be inhospitable," said Priscu. "These life forms may possess novel ice-active substances such as antifreezes and ice nucleation inhibitors that allow the organisms to survive the freeze-thaw cycles and come back to life when exposed to liquid water," he said.

"Importantly, the cold temperatures preserve DNA extremely well making them perfect ’ice museums’ for the study of ancient DNA," Priscu added. Research on the ancient DNA will provide an evolutionary and functional history of the microorganisms, he said, and he believes the findings might help scientists draw implications for the type of life that may exist in Lake Vostok, a huge lake which lies more than 4 km beneath the East Antarctic Ice Sheet.

Lake Vida, more than 5 km long, is one of the largest in the cold Antarctic desert region known as the McMurdo Dry Valleys. The area receives less than 10 cm of snow per year and the average annual temperature hovers around -30°C.

Using data from the ice sensors and from an automatic meteorological station on the shore of the lake, the researchers created a thermodynamic model to understand the complex melting and freezing processes within Vida.

The model provided a better understanding of the evolution of the ice cover and the underlying salt water. The freezing, growing ice cover concentrates the salt, thereby depressing the freezing point of the water, and extending the viability of a lake ecosystem.

"Lake Vida provides insight into a novel terrestrial ecosystem," said Doran. "What happened at Lake Vida may have been the fate of other Antarctic lakes, during even colder times, and more tropical aquatic ecosystems during extreme global glaciations of the past, such as the ’snowball Earth’ 550 Million years ago."

The researchers believe that Lake Vida may also offer clues to likely environments for finding signs of ancient, Martian, microbial life. Said Doran, "Mars is believed to have a water rich past, and if life developed, a Lake Vida-type ecosystem may have been the final niche for life on Mars before the water bodies froze solid."

The research was carried out as part of NSF’s McMurdo Long Term Ecological Research (LTER) project, and was also funded in part by NASA’s Exobiology program.

Josh Chamot, | NSF
Further information:
http://huey.colorado.edu/LTER/
http://www.nsf.gov/od/lpa/news/02/pr02100.htm

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>