Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers uncover extreme lake - and 3000-year-old microbes - in Mars-like antarctic environment


Researchers sawing an observation hole in the permanent lake ice of a dry valley lake.
Image courtesy of the Priscu Research Group, Montana State University at Bozeman

Small segment of ice core from Lake Vida showing a layer of sediment. Researchers have discovered that the microbes are found with the sediment.
Image courtesy of the Priscu Research Group, Montana State University at Bozeman

NSF-supported researchers drilling into Lake Vida, an Antarctic "ice-block" lake, have found the lake isn’t really an ice block at all. In the December 16 issue of the Proceedings of the National Academy of Sciences, the team reveals that Antarctic Lake Vida may represent a previously unknown ecosystem, a frigid, "ice-sealed," lake that contains the thickest non-glacial lake ice cover on Earth and water seven times saltier than seawater.

Because of the arid, chilled environment in which it resides, scientists believe the lake may be an important template for the search for evidence of ancient microbial life on Mars and other icy worlds.

Researchers previously thought Vida was one of several Antarctic lakes that are frozen to their beds year-round. However, using ground-penetrating radar, ice core analyses, and long-term temperature data, the researchers now show that Vida has a thick light-blocking ice cover, a vast amount of ancient organic material and sediment, and a cold, super-salty, liquid zone underlying the ice - an environment that remains liquid at temperatures under -10°C, well below the freezing point of pure water.

Peter Doran of the University of Illinois at Chicago conducted the research along with colleagues at the Desert Research Institute in Reno, Nevada; NASA’s Ames Research Center in Moffett Field, California; and Montana State University in Bozeman.

The researchers extracted two ice cores from Lake Vida in early Antarctic spring (October) 1996. With an electromechanical drill, team members spent two weeks at temperatures below -35°C drilling a 10-cm-diameter core through 16-m of ice cover.

The researchers filled both of the holes with deionized water (to seal the columns with an ice plug), emplacing temperature measuring instruments in one of the shafts.

"The sediment within the ice made coring extremely difficult and required frequent bit changes and a complete motor replacement at one stage," said John Priscu of Montana State University.

"It was some very cold drilling," added Doran. "We were there for two weeks at temperatures approaching -40°C . . . camping. The drillers had a hard time getting through the sediment layers. They were used to drilling clean ice up on the polar plateau; the dirt in the ice tended to dull the cutting bits."

Despite these difficulties, said Priscu, the core segments collected provided new insights to a previously undescribed Antarctic ecosystem.

From the cores, the scientists found a layered chemical and biological history preserved in the ice, and revived viable microbes that are at least 2,800 years old.

"The ice covers of these lakes represent an oasis for life in an environment previously thought to be inhospitable," said Priscu. "These life forms may possess novel ice-active substances such as antifreezes and ice nucleation inhibitors that allow the organisms to survive the freeze-thaw cycles and come back to life when exposed to liquid water," he said.

"Importantly, the cold temperatures preserve DNA extremely well making them perfect ’ice museums’ for the study of ancient DNA," Priscu added. Research on the ancient DNA will provide an evolutionary and functional history of the microorganisms, he said, and he believes the findings might help scientists draw implications for the type of life that may exist in Lake Vostok, a huge lake which lies more than 4 km beneath the East Antarctic Ice Sheet.

Lake Vida, more than 5 km long, is one of the largest in the cold Antarctic desert region known as the McMurdo Dry Valleys. The area receives less than 10 cm of snow per year and the average annual temperature hovers around -30°C.

Using data from the ice sensors and from an automatic meteorological station on the shore of the lake, the researchers created a thermodynamic model to understand the complex melting and freezing processes within Vida.

The model provided a better understanding of the evolution of the ice cover and the underlying salt water. The freezing, growing ice cover concentrates the salt, thereby depressing the freezing point of the water, and extending the viability of a lake ecosystem.

"Lake Vida provides insight into a novel terrestrial ecosystem," said Doran. "What happened at Lake Vida may have been the fate of other Antarctic lakes, during even colder times, and more tropical aquatic ecosystems during extreme global glaciations of the past, such as the ’snowball Earth’ 550 Million years ago."

The researchers believe that Lake Vida may also offer clues to likely environments for finding signs of ancient, Martian, microbial life. Said Doran, "Mars is believed to have a water rich past, and if life developed, a Lake Vida-type ecosystem may have been the final niche for life on Mars before the water bodies froze solid."

The research was carried out as part of NSF’s McMurdo Long Term Ecological Research (LTER) project, and was also funded in part by NASA’s Exobiology program.

Josh Chamot, | NSF
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>