Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineers work on their SUNTANS as they track waves and beaches


Nearly a month has passed since the wounded tanker Prestige spilled thousands of tons of heavy oil into the Atlantic and fouled dozens of Spanish beaches. But anxious residents of coastal Spain and Portugal remain on high alert - wondering where and when the noxious crude will wash ashore next.

In recent years, tanker accidents have ruined fisheries and tourist beaches from Alaska to France. But do oil spills always have to end in catastrophe? Perhaps the most vulnerable beaches and coastal habitats could be identified and protected well in advance, if scientists had some way to predict where a glob of spilled crude was likely to end up.

A team of engineers from Stanford University is trying to accomplish that challenging task by developing a computer code capable of tracking massive internal waves that begin on the ocean floor and gather strength as they rise to the surface.

Internal waves can reach heights of 300 feet and often contain enough energy to move pollutants, debris and even boats long distances. Despite their size, internal waves are difficult to detect because they move invisibly below the surface.

"Tracking internal waves is important to the fishing industry and for understanding ocean pollution," said Margot Gerritsen, an assistant professor of petroleum engineering. "If you accidentally drop some pollutants into a coastal region, you’ll want to be able to predict how quickly they mix."

Gerritsen and Stanford colleagues Robert Street and Oliver Fringer are spearheading SUNTANS - a federally funded research project to develop a computer code that can identify internal waves and forecast when they will reach the shore.

"What we’re trying to do is simulate a coastal region precisely enough to find internal waves with our computer code and predict where they will break. Currently, there is no code that can do this accurately," Gerritsen said. She and her colleagues were scheduled to discuss the SUNTANS project at the annual fall meeting of the American Geophysical Union in San Francisco on Dec. 9.

"SUNTANS certainly will have an impact on the fishing industry, because with this code, we can predict where there will be a lot of vertical mixing, which tells us a lot about the availability of nutrients in the water," Gerritsen noted. "We’ll also be able to use it to track the transport of red tides and other toxic blooms."

SUNTANS also could be used to create better forecasting models of global climate change. "Internal waves are generated by the tides, and 75 percent of all tidal energy gets dissipated in coastal regions," Gerritsen said. "If we have a better sense of why this is and how this works, then we can apply that to a global model. Right now, global climate models don’t even take the tides into account most of the time."


SUNTANS is the acronym for the Stanford Unstructured Non-hydrostatic Terrain-following Adaptive Navier-Stokes Simulator - a long name that reflects the enormous complexity of trying to simulate and forecast oceanic wave movement. "Navier-Stokes" refers to a set of 19th-century equations that have become standard tools in the field of fluid dynamics.

"The Navier-Stokes equations provide the means of finding the accelerations of fluid masses caused by the forces acting in the ocean," explained Street, the William Alden and Martha Campbell Professor in the School of Engineering. "They’re very hard to solve, in part because things like wind on the surface or varying densities in the fluid itself can produce a complex variety of forces that, together, make the fluid accelerate."

The SUNTANS team is using Navier-Stokes equations and cutting-edge computer algorithms to create a universal code that can be applied to any of the world’s oceans. So far, the research effort is focused on two sites in the Pacific: Hawaii’s Mamala Bay, which includes Pearl Harbor and Waikiki; and California’s Monterey Bay, located about 50 miles southwest of the Stanford campus.

Monterey Bay provides an ideal setting because it includes a near-shore canyon that is deeper than the Grand Canyon.

"When water comes up against the slope of Monterey Canyon, it excites internal waves that propagate throughout the canyon," Street said. "Some of these waves get pretty big, but they’re very subtle, sometimes appearing as little ripples on the surface."

When internal waves are funneled up the canyon, they intensify and often turn into breaking waves that pick up sand and other material from the ocean floor.

"Internal waves have even been known to move a ship from its anchorage," Street noted, citing a 1991 Coast Guard report that described how a breaking internal wave in Monterey Canyon may have contributed to a mishap in which the propeller of a tanker became entangled with a buoy chain.

"People in Hawaii are interested in SUNTANS from a tourism point of view," Gerritsen added, "especially in Mamala Bay, where tankers and ships pass very close by the coast."

Better mousetrap

Street predicted that the SUNTANS team "could have a code we’re happy with a year from now. With Margot and Oliver’s numerical expertise, we can build a better mousetrap - a better numerical code that would be very accurate, very fast and would allow people to predict internal waves and circulation accurately to solve coastal environment problems."

SUNTANS requires thousands of parallel computers operating in tandem - the kind of enormous computing power available at only a handful of national centers.

"If we put this on the fastest parallel computer currently available, it would be fast enough to do realistic cases," Gerritsen said. "Of course, the average researcher does not have this kind of computer technology now, but it should be widely available in a few years when the SUNTANS code is up and running."

The SUNTANS project is supported by the National Science Foundation and the Office of Naval Research.

By Mark Shwartz

CONTACT: Mark Shwartz, News Service: (650) 723-9296,

Mark Shwartz | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>