Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will Climate Change Temper El Niño’s Tantrums?

10.12.2002


The broad-scale warming expected from increased greenhouse gases may actually sap the strength of a typical El Niño, according to researchers at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. In contrast, the average El Niño during the last ice age may have packed more punch than today’s. The scientists have examined the past and future behavior of El Niño using a sophisticated computer model of global climate. They present their results this week at the annual meeting of the American Geophysical Union in San Francisco, December 6–10.


El Niño typically brings flooding to some parts of the world and drought to others. New research suggests El Niños have weakened since prehistoric times and could change still further in the future



More tepid El Niños to come?

NCAR scientist Esther Brady is lead author of a study that uses the NCAR Climate System Model to track how global air and ocean circulation could evolve at increasing levels of carbon dioxide, the most prevalent of the industrial greenhouse gases. The scientists simulated Earth’s climate with atmospheric carbon dioxide at one, two, and six times its preindustrial level of about 280 parts per million.


As greenhouse gases increase and global air temperatures rise, Brady’s results show a significant weakening of the average El Niño event. El Niño typically shifts warm water from the western Pacific toward the central and eastern tropics, as east-to-west trade winds weaken. Her simulations show an increase in cold upwelling off the coasts of Ecuador and Peru. This helps keep the eastern tropical Pacific from warming up as much as the west, sharpening the oceanic contrast that feeds the trade winds and helps keep El Niño at bay. Brady also found that greenhouse warming in the model led to a decoupling of the link between Pacific trade winds and the underlying sea-surface temperatures. This ocean-atmosphere link is believed to help drive the cycle of El Niño and its cool-water counterpart, La Niña.

Although this cycle might weaken on average in a greenhouse-warmed world, any given El Niño could still be intense, Brady notes. Even in the most extreme simulation, with six times the present-day level of carbon dioxide, large El Niños occur—but fewer overall.

Simulating El Niño’s past

It turns out there’s a history of diminished El Niño events in a warming world, according to another Climate System Model study. Led by NCAR’s Bette Otto-Bliesner, this project examined the period around 11,000 years ago, when global temperatures were rebounding from the last ice age. The average El Niño during this period in the computer simulation was about 20% weaker than today. The main factor responsible for the decrease is a slow shift in Earth’s asymmetric orbit around the Sun. Nowadays, Earth’s orbit comes closest to the Sun in early January, but 11,000 years ago, the closest approach came in the Northern Hemisphere summer, the season when most El Niños are just beginning to intensify. Along with other factors, the near-Sun approach may have provided enough extra heating to warm the western Pacific, while the eastern Pacific—where upwelling of cold water dominates—remained chilly. Driven by this intensified contrast, the east-to-west trade winds would strengthen, hindering developing El Niños.

Looking even further back in time, Otto-Bliesner and colleagues found that a more vigorous El Niño may have held sway when the last ice age was at its peak. Simulations for 21,000 years ago show the typical El Niño about 20% stronger than today. In the model, cold water sinks as it drifts from ice-covered southern oceans into the tropical Pacific. The thermocline—an oceanic boundary that separates surface warmth and subsurface chill—is thus strengthened, and the effect, says Otto-Bliesner, is to ramp up the average intensity of both El Niños and La Niñas.

Previous studies have differed on how intense El Niño events might have been in the past. She adds that both weak and strong El Niños show up in each era studied thus far, and more work is needed to arrive at a solid history. "The observational record is pretty short. El Niño may be changing already, but I don’t think we really know that yet."

Background: How El Niño works

A tight coupling between ocean and atmosphere produces the weather and climate impacts of El Niño and its counterpart, La Niña. During El Niño, the trade winds that usually blow from east to west across the tropical Pacific weaken, and the strong upwelling that normally keeps waters cool off Peru and Ecuador diminishes. This allows warmer water to extend across the tropical Pacific, rather than being confined to the west near Indonesia. Tropical showers and thunderstorms follow the warm waters eastward, toward South America. The air rising within these displaced storms helps steer upper-level winds and shape climate across much of the globe. In contrast, during La Niña, the trade winds strengthen, upwelling increases, and the eastern tropical Pacific is cooler than normal. This helps trigger a different set of climate impacts, some of them the opposite of those expected during El Niño. The entire system of ocean-atmosphere linkages is known as the El Niño–Southern Oscillation (ENSO).

Writer: Bob Henson

Bob Henson | EurekAlert!

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>