Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will Climate Change Temper El Niño’s Tantrums?

10.12.2002


The broad-scale warming expected from increased greenhouse gases may actually sap the strength of a typical El Niño, according to researchers at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. In contrast, the average El Niño during the last ice age may have packed more punch than today’s. The scientists have examined the past and future behavior of El Niño using a sophisticated computer model of global climate. They present their results this week at the annual meeting of the American Geophysical Union in San Francisco, December 6–10.


El Niño typically brings flooding to some parts of the world and drought to others. New research suggests El Niños have weakened since prehistoric times and could change still further in the future



More tepid El Niños to come?

NCAR scientist Esther Brady is lead author of a study that uses the NCAR Climate System Model to track how global air and ocean circulation could evolve at increasing levels of carbon dioxide, the most prevalent of the industrial greenhouse gases. The scientists simulated Earth’s climate with atmospheric carbon dioxide at one, two, and six times its preindustrial level of about 280 parts per million.


As greenhouse gases increase and global air temperatures rise, Brady’s results show a significant weakening of the average El Niño event. El Niño typically shifts warm water from the western Pacific toward the central and eastern tropics, as east-to-west trade winds weaken. Her simulations show an increase in cold upwelling off the coasts of Ecuador and Peru. This helps keep the eastern tropical Pacific from warming up as much as the west, sharpening the oceanic contrast that feeds the trade winds and helps keep El Niño at bay. Brady also found that greenhouse warming in the model led to a decoupling of the link between Pacific trade winds and the underlying sea-surface temperatures. This ocean-atmosphere link is believed to help drive the cycle of El Niño and its cool-water counterpart, La Niña.

Although this cycle might weaken on average in a greenhouse-warmed world, any given El Niño could still be intense, Brady notes. Even in the most extreme simulation, with six times the present-day level of carbon dioxide, large El Niños occur—but fewer overall.

Simulating El Niño’s past

It turns out there’s a history of diminished El Niño events in a warming world, according to another Climate System Model study. Led by NCAR’s Bette Otto-Bliesner, this project examined the period around 11,000 years ago, when global temperatures were rebounding from the last ice age. The average El Niño during this period in the computer simulation was about 20% weaker than today. The main factor responsible for the decrease is a slow shift in Earth’s asymmetric orbit around the Sun. Nowadays, Earth’s orbit comes closest to the Sun in early January, but 11,000 years ago, the closest approach came in the Northern Hemisphere summer, the season when most El Niños are just beginning to intensify. Along with other factors, the near-Sun approach may have provided enough extra heating to warm the western Pacific, while the eastern Pacific—where upwelling of cold water dominates—remained chilly. Driven by this intensified contrast, the east-to-west trade winds would strengthen, hindering developing El Niños.

Looking even further back in time, Otto-Bliesner and colleagues found that a more vigorous El Niño may have held sway when the last ice age was at its peak. Simulations for 21,000 years ago show the typical El Niño about 20% stronger than today. In the model, cold water sinks as it drifts from ice-covered southern oceans into the tropical Pacific. The thermocline—an oceanic boundary that separates surface warmth and subsurface chill—is thus strengthened, and the effect, says Otto-Bliesner, is to ramp up the average intensity of both El Niños and La Niñas.

Previous studies have differed on how intense El Niño events might have been in the past. She adds that both weak and strong El Niños show up in each era studied thus far, and more work is needed to arrive at a solid history. "The observational record is pretty short. El Niño may be changing already, but I don’t think we really know that yet."

Background: How El Niño works

A tight coupling between ocean and atmosphere produces the weather and climate impacts of El Niño and its counterpart, La Niña. During El Niño, the trade winds that usually blow from east to west across the tropical Pacific weaken, and the strong upwelling that normally keeps waters cool off Peru and Ecuador diminishes. This allows warmer water to extend across the tropical Pacific, rather than being confined to the west near Indonesia. Tropical showers and thunderstorms follow the warm waters eastward, toward South America. The air rising within these displaced storms helps steer upper-level winds and shape climate across much of the globe. In contrast, during La Niña, the trade winds strengthen, upwelling increases, and the eastern tropical Pacific is cooler than normal. This helps trigger a different set of climate impacts, some of them the opposite of those expected during El Niño. The entire system of ocean-atmosphere linkages is known as the El Niño–Southern Oscillation (ENSO).

Writer: Bob Henson

Bob Henson | EurekAlert!

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>