Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INEEL geoscientist to present NAPL contaminant modeling advance at AGU Meeting

09.12.2002


DOE News Release Embargoed for release December 6, 2002 INEEL geoscientist to present NAPL contaminant modeling advance at AGU Meeting By modifying the mathematical theory describing the relationship between permeability, saturation, and pressure in a multiple fluid system, researchers can now more accurately predict the movement of non-aqueous phase liquid (NAPL) contaminants in the subsurface. New calculations account for residual NAPL that remains in the vadose zone-forming a long-term source for groundwater contamination, and also explain how part of this residue can be flushed into groundwater during rainstorms or flooding.



This research, funded through U.S. Department of Energy’s Idaho National Engineering and Environmental Laboratory’s Subsurface Science Initiative (SSI), supports the DOE’s mission in environmental science.

Hydrologist Robert Lenhard of the INEEL, has resolved a critical contamination modeling problem by refining current constitutive theory - theory describing relations among fluid relative permeabilities, saturations, and pressures. His new model predicts the distribution of residual NAPL based on the prior fluid wetting and drying cycles in the subsurface. Lenhard will present his work at the American Geophysical Union meeting in San Francisco, CA, on December 8, 2002 during the Hydrology session.


"If you run existing multiphase flow models long enough, the results show that NAPL will completely drain from a vadose zone, which is contrary to field and experimental observations" said Lenhard. Better constitutive theory is needed for developing accurate computer models. "The lack of well-founded constitutive theory may be the foremost element impeding the development of accurate predictive multiphase flow models," he adds.

Lenhard’s modeling advance represents a shift in researchers’ conceptual understanding of NAPL behavior by recognizing that some NAPL becomes immobilized in pore spaces or as thin films on soil solids. Nowadays, subsurface contamination by NAPLs is almost ubiquitous. As a result of DOE’s efforts to develop, test, manufacture, and maintain nuclear weapons for national security purposes, the DOE has very complex contamination problems with NAPLs that are denser than water. Additionally, an estimated 60 percent of Superfund (DOE, industrial and municipal) sites have NAPL contamination.

Lenhard and colleagues conducted pilot-scale (mesoscale) experiments in the laboratory to study how NAPLs behave under different conditions. NAPLs can move through the vadose zone as liquid, vapor, or carried along as dissolved droplets within a moving stream of water. His experiments indicate that residual NAPL will generate pulses of contamination during heavy rainstorms or flooding, especially at arid sites. A better understanding of how residual NAPLs contribute to contamination could influence environmental remediation choices.

Most NAPLs, such as fuels and degreasing solvents, are petroleum based. Predicting the movement of NAPLs in the subsurface is challenging because NAPLs can be either lighter or heavier than water and don’t mix with water. Light NAPLs accumulate above the water table, and can depress the water-saturated region. Heavy or dense NAPLs sink below the water table and are very difficult to locate and clean up.

In order to predict the subsurface movement of multiple fluids, it is very important to know how the fluids are distributed throughout the pore spaces. The sizes of the pores containing the fluids will affect how rapidly these fluids can move downward to groundwater. If the fluids contain compounds harmful to humans and the environment, then by knowing how fast and in what quantities these compounds will reach the groundwater, effective remediation strategies can be developed using computer modeling. Lenhard has spent much of his career developing new techniques for measuring subsurface NAPL behavior and developing mathematical models for describing multi-fluid flow constitutive theory, which is needed to predict the flow behavior of multiple fluids in porous media. He is a leader in multiphse flow constitutive theory and his models are used worldwide by many scientists to predict air-NAPL-water flow behavior.

Martinus Oostrum of the DOE’s Pacific Northwest National Laboratory, who has worked with Lenhard, plans to use Lenhard’s new methodology to enhance the accuracy of the STOMP model- a numerical computer program for predicting Subsurface Transport Over Multiple Phases (STOMP). It is expected that the improved computer model will be used to help address NAPL contamination at DOE sites. Lenhard is also interested in employing his constitutive models in other multiphase flow

Deborah Hill | INEEL
Further information:
http://www.inel.gov

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>