Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INEEL geoscientist to present NAPL contaminant modeling advance at AGU Meeting

09.12.2002


DOE News Release Embargoed for release December 6, 2002 INEEL geoscientist to present NAPL contaminant modeling advance at AGU Meeting By modifying the mathematical theory describing the relationship between permeability, saturation, and pressure in a multiple fluid system, researchers can now more accurately predict the movement of non-aqueous phase liquid (NAPL) contaminants in the subsurface. New calculations account for residual NAPL that remains in the vadose zone-forming a long-term source for groundwater contamination, and also explain how part of this residue can be flushed into groundwater during rainstorms or flooding.



This research, funded through U.S. Department of Energy’s Idaho National Engineering and Environmental Laboratory’s Subsurface Science Initiative (SSI), supports the DOE’s mission in environmental science.

Hydrologist Robert Lenhard of the INEEL, has resolved a critical contamination modeling problem by refining current constitutive theory - theory describing relations among fluid relative permeabilities, saturations, and pressures. His new model predicts the distribution of residual NAPL based on the prior fluid wetting and drying cycles in the subsurface. Lenhard will present his work at the American Geophysical Union meeting in San Francisco, CA, on December 8, 2002 during the Hydrology session.


"If you run existing multiphase flow models long enough, the results show that NAPL will completely drain from a vadose zone, which is contrary to field and experimental observations" said Lenhard. Better constitutive theory is needed for developing accurate computer models. "The lack of well-founded constitutive theory may be the foremost element impeding the development of accurate predictive multiphase flow models," he adds.

Lenhard’s modeling advance represents a shift in researchers’ conceptual understanding of NAPL behavior by recognizing that some NAPL becomes immobilized in pore spaces or as thin films on soil solids. Nowadays, subsurface contamination by NAPLs is almost ubiquitous. As a result of DOE’s efforts to develop, test, manufacture, and maintain nuclear weapons for national security purposes, the DOE has very complex contamination problems with NAPLs that are denser than water. Additionally, an estimated 60 percent of Superfund (DOE, industrial and municipal) sites have NAPL contamination.

Lenhard and colleagues conducted pilot-scale (mesoscale) experiments in the laboratory to study how NAPLs behave under different conditions. NAPLs can move through the vadose zone as liquid, vapor, or carried along as dissolved droplets within a moving stream of water. His experiments indicate that residual NAPL will generate pulses of contamination during heavy rainstorms or flooding, especially at arid sites. A better understanding of how residual NAPLs contribute to contamination could influence environmental remediation choices.

Most NAPLs, such as fuels and degreasing solvents, are petroleum based. Predicting the movement of NAPLs in the subsurface is challenging because NAPLs can be either lighter or heavier than water and don’t mix with water. Light NAPLs accumulate above the water table, and can depress the water-saturated region. Heavy or dense NAPLs sink below the water table and are very difficult to locate and clean up.

In order to predict the subsurface movement of multiple fluids, it is very important to know how the fluids are distributed throughout the pore spaces. The sizes of the pores containing the fluids will affect how rapidly these fluids can move downward to groundwater. If the fluids contain compounds harmful to humans and the environment, then by knowing how fast and in what quantities these compounds will reach the groundwater, effective remediation strategies can be developed using computer modeling. Lenhard has spent much of his career developing new techniques for measuring subsurface NAPL behavior and developing mathematical models for describing multi-fluid flow constitutive theory, which is needed to predict the flow behavior of multiple fluids in porous media. He is a leader in multiphse flow constitutive theory and his models are used worldwide by many scientists to predict air-NAPL-water flow behavior.

Martinus Oostrum of the DOE’s Pacific Northwest National Laboratory, who has worked with Lenhard, plans to use Lenhard’s new methodology to enhance the accuracy of the STOMP model- a numerical computer program for predicting Subsurface Transport Over Multiple Phases (STOMP). It is expected that the improved computer model will be used to help address NAPL contamination at DOE sites. Lenhard is also interested in employing his constitutive models in other multiphase flow

Deborah Hill | INEEL
Further information:
http://www.inel.gov

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>