Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change will affect carbon sequestration in oceans, scientists say

04.12.2002


The direct injection of unwanted carbon dioxide deep into the ocean is one suggested strategy to help control rising atmospheric carbon dioxide levels and mitigate the effects of global warming. But, like the problems associated with the long-term storage of nuclear waste, finding a safe place to sequester the carbon may be more difficult than scientists first anticipated.

Because the atmosphere interacts with the oceans, the net uptake of carbon dioxide and the oceans’ sequestration capacity would be affected by a change in climate. Just how effective carbon sequestration would be, in light of projected climate change, has not been studied before. Indeed, estimating the impact of carbon injection is complicated because of a limited understanding of climate and oceanic carbon cycle feedback mechanisms.

"Through various feedback mechanisms, the ocean circulation could change and affect the retention time of carbon dioxide injected into the deep ocean, thereby indirectly altering oceanic carbon storage and atmospheric carbon dioxide concentration," said Atul Jain, a professor of atmospheric sciences at the University of Illinois at Urbana-Champaign. "Where you inject the carbon dioxide turns out to be a very important issue."



To investigate the possible effects of feedbacks between global climate change, the ocean carbon cycle and oceanic carbon sequestration, Jain and graduate student Long Cao developed an atmosphere-ocean, climate-carbon cycle model of intermediate complexity. The researchers then used the model to study the effectiveness of oceanic carbon sequestration by the direct injection of carbon dioxide at different locations and ocean depths.

Jain and Cao found that climate change has a big impact on the oceans’ ability to store carbon dioxide. The effect was most pronounced in the Atlantic Ocean.

"When we ran the model without the climate feedback mechanisms, the Pacific Ocean held more carbon dioxide for a longer period of time," Cao said. "But when we added the feedback mechanisms, the retention time in the Atlantic Ocean proved far superior. Based on our initial results, injecting carbon dioxide into the Atlantic Ocean would be more effective than injecting it at the same depth in either the Pacific Ocean or the Indian Ocean."

Future climate change could affect both the uptake of carbon dioxide in the ocean basins and the ocean circulation patterns themselves, Jain said. "As sea-surface temperatures increase, the density of the water decreases and thus slows down the ocean thermohaline circulation, so the ocean’s ability to absorb carbon dioxide also decreases. This leaves more carbon dioxide in the atmosphere, exacerbating the problem. At the same time, the reduced ocean circulation will decrease the ocean mixing, which decreases the ventilation to the atmosphere of carbon injected into the deep ocean. Our model results show that this effect is more dominating in the Atlantic Ocean."

Tucking away excess carbon dioxide in Davy Jones’s locker is not a permanent solution for reducing the amount of carbon dioxide in the atmosphere. "Sequestering carbon in the deep ocean is, at best, a technique to buy time," Jain said.

"Carbon dioxide dumped in the oceans won’t stay there forever. Eventually it will percolate to the surface and into the atmosphere."

To buy as much time as possible, the carbon dioxide must remain trapped for as long as possible. "The big question is in what region of which ocean will future climate change have the least effect," Jain said. "That’s where we will want to store the carbon dioxide."


Jain and Cao will present their latest findings at the American Geophysical Union meeting in San Francisco, Dec. 6-10. The U.S. Department of Energy funded the work.

James Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>