Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping with math

03.12.2002


In an unexpected meeting of the minds, two Dartmouth professors from disparate fields have come together to solve a problem: how to make accurate models of remote landscapes from photographs.


Dartmouth Professors Hany Farid (left) and Arjun Heimsath have found a way to create 3-D models of remote regions using only 2-D photographs



Arjun Heimsath, Assistant Professor of Earth Sciences, and Hany Farid, Assistant Professor of Computer Science, have found a way to create three-dimensional models of remote regions using only two-dimensional digital photographs. Once built, these models make it easier for researchers to predict landslides, erosion rates and other geomorphic events.

"It started after I got back from one of my trips to Nepal," says Heimsath. "I wasn’t able to survey the area I wanted because it was so hard to get to on foot. I’d seen Hany’s work, and I wondered if he could create the models I needed from photographs."


Usually, global positioning systems, satellite technology and other intensive surveying techniques are used to create digital elevation models, or DEMs. These methods are sometimes expensive, time consuming, or physically impossible to carry out in some parts of the world, and the equipment can be cumbersome, explains Heimsath. Farid, whose research focuses on image processing and computer vision, immediately realized he could help.

"We sketched out the idea on a napkin over lunch," says Farid. "I asked Arjun to take some photographs on his next trip, and we tested our theory within about three weeks. It didn’t really work at first, but it worked well enough to keep going."

Their collaboration resulted in a paper that appeared in the November 2002 issue of the Mathematical Geology Journal, which describes a new method to obtain DEMs, without walking through poison oak, navigating rough or unstable terrain, or hauling around big, expensive and delicate equipment.

"With our method, you breeze in with a digital camera, and with relative ease, you get the DEM," says Heimsath.

On any single photograph there is not enough information to calculate the DEM, explains Farid. But with at least three images of the same region, taken from slightly different vantage points, you can capture all the necessary data. Once the images are in the computer, the researcher has to manually pick spots on each picture that correspond, such as identifying the same shrub, the same boulder, and so on.

"After you pick somewhere between 50 and 100 points, the mathematical algorithm takes over and automatically estimates the elevation map," says Farid.

Farid explains that much of the math they utilized was developed for other applications. What he and Heimsath added were constraints unique to the surface geometry of the Earth’s surface. These constraints help to better condition or fine-tune the mathematical algorithms.

"One of the strikingly elegant aspects of our method is that you’ve got the pictures," says Heimsath, "so you know what your output is supposed to look like. If you run this model and you get something that doesn’t look like the picture, then you know you’ve done something wrong."

The algorithms are not without limitations, however. And the researchers caution that their methodology hasn’t been rigorously field tested yet. One limitation is the type of landscape being modeled. Ideally, the ground surface shouldn’t be covered in vegetation. In order for the calculations to work, the photos have to clearly illustrate the ground. Also, when taking the photos, the researcher needs a good point of view taken from a little distance away.

"It’s no good to be looking at the area you want to map from below. It’s better if you are on a hillside adjacent to the area, across the valley or on a nearby ridge," says Heimsath. Both researchers agree that it was a fun collaborative project.

"What was nice about the work, and what’s representative of Dartmouth, is that I’m taking tools from the mathematics and computer vision community," says Farid, "and applying them to a real-world problem that Arjun works on. It was just a good fit and a natural partnership. The fact that we live next door to each other helped maintain the momentum."

From the original lunch in the cafe to publication took about eight months. Farid and Heimsath say it’s probably the quickest project they’ve ever worked on. The next step is to move from theory to real-life application. Two of their students, Deane Somerville, from Sherborn, Mass., and Layne Moffett, from Tulsa, Okla., both Dartmouth undergraduates from the Class of ’05, plan to travel to New Zealand in January to test the theory. The students will go to areas that have already been surveyed by conventional methods, and take digital photos to see if the new methodology compares to what’s known. If it doesn’t, they can immediately return to the field and take some more pictures for more tests. In addition to publishing their paper in the Mathematical Geology Journal, Farid and Heimsath will present their research at the American Geophysical Union’s annual meeting in December.

Farid’s research is funded by the National Science Foundation and an Alfred P. Sloan Fellowship. Heimsath is also supported by the National Science Foundation.

SUSAN KNAPP | EurekAlert!
Further information:
http://www.dartmouth.edu/~news
http://www.dartmouth.edu/~news/releases/dec02/mathmap.shtml

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>