Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geophysicist develops method for finding underground contaminants

03.12.2002


When a property is suspected of having contaminated soil or groundwater, it is usually a lengthy and costly process to confirm the presence of pollutants and to delineate the extent of the contamination. Soon that process may be simplified considerably.



University of Rhode Island geophysicist Reinhard Frohlich, an associate professor of geosciences, has devised a cost-effective, new method for finding underground contaminants that will reduce drilling and digging beneath the surface. By inserting two metal spikes in the ground at various distances and connecting them to an electric current, Frohlich can measure the voltage between the spikes and determine the resistivity of the soil, which tells him if the soil is polluted.

"My initial objective was to do an experiment at the surface that would explain what was going on beneath the surface," said Frohlich, whose research was funded by a $55,000 grant from the U.S. Environmental Protection Agency.


Resistivity measurements, which calculate a material’s opposition to the flow of electric current, are widely used to track contaminated salts dissolved in groundwater because they are good conductors of electricity. But Frohlich’s experiments focused on finding organic compounds like toluene, benzene, xylene, ethylbenzene, phenol and other cancer-causing substances that do not conduct electricity.

"Our system seems to work very well on all organic compounds. Resistivity increases significantly in areas where the aquifer is polluted compared to clean areas," he said. "We should be able to use this as the first step in the remediation process because it’s quicker and allows us to drill fewer borings into the aquifer." Frohlich tested his system at the Picillo Pig Farm in West Coventry, a Superfund site where illegal dumping of chemical waste was discovered following an explosion in 1978. The R.I. Department of Environmental Management and the EPA have been monitoring and cleaning the site for more than 20 years.

"The Picillo Farm is a suitable site for our experiments because the results can be compared with the many monitoring wells and other analyses that have been conducted there over the years," Frohlich said. In addition to field tests at the Picillo Farm, Frohlich conducted controlled laboratory tests comparing clean soil with contaminated soil of known composition.

His study will next attempt to quantify the amount of contaminants at a given location. "It’s one thing to identify a clean or contaminated site, but we want to also get a quantitative value for the contaminants," said Frohlich. "That’s something that the EPA would really like to be able to do."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Earth Sciences:

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

nachricht The significance of seaweed
16.09.2016 | King Abdullah University of Science and Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>