Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geophysicist develops method for finding underground contaminants

03.12.2002


When a property is suspected of having contaminated soil or groundwater, it is usually a lengthy and costly process to confirm the presence of pollutants and to delineate the extent of the contamination. Soon that process may be simplified considerably.



University of Rhode Island geophysicist Reinhard Frohlich, an associate professor of geosciences, has devised a cost-effective, new method for finding underground contaminants that will reduce drilling and digging beneath the surface. By inserting two metal spikes in the ground at various distances and connecting them to an electric current, Frohlich can measure the voltage between the spikes and determine the resistivity of the soil, which tells him if the soil is polluted.

"My initial objective was to do an experiment at the surface that would explain what was going on beneath the surface," said Frohlich, whose research was funded by a $55,000 grant from the U.S. Environmental Protection Agency.


Resistivity measurements, which calculate a material’s opposition to the flow of electric current, are widely used to track contaminated salts dissolved in groundwater because they are good conductors of electricity. But Frohlich’s experiments focused on finding organic compounds like toluene, benzene, xylene, ethylbenzene, phenol and other cancer-causing substances that do not conduct electricity.

"Our system seems to work very well on all organic compounds. Resistivity increases significantly in areas where the aquifer is polluted compared to clean areas," he said. "We should be able to use this as the first step in the remediation process because it’s quicker and allows us to drill fewer borings into the aquifer." Frohlich tested his system at the Picillo Pig Farm in West Coventry, a Superfund site where illegal dumping of chemical waste was discovered following an explosion in 1978. The R.I. Department of Environmental Management and the EPA have been monitoring and cleaning the site for more than 20 years.

"The Picillo Farm is a suitable site for our experiments because the results can be compared with the many monitoring wells and other analyses that have been conducted there over the years," Frohlich said. In addition to field tests at the Picillo Farm, Frohlich conducted controlled laboratory tests comparing clean soil with contaminated soil of known composition.

His study will next attempt to quantify the amount of contaminants at a given location. "It’s one thing to identify a clean or contaminated site, but we want to also get a quantitative value for the contaminants," said Frohlich. "That’s something that the EPA would really like to be able to do."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>