Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geophysicist develops method for finding underground contaminants

03.12.2002


When a property is suspected of having contaminated soil or groundwater, it is usually a lengthy and costly process to confirm the presence of pollutants and to delineate the extent of the contamination. Soon that process may be simplified considerably.



University of Rhode Island geophysicist Reinhard Frohlich, an associate professor of geosciences, has devised a cost-effective, new method for finding underground contaminants that will reduce drilling and digging beneath the surface. By inserting two metal spikes in the ground at various distances and connecting them to an electric current, Frohlich can measure the voltage between the spikes and determine the resistivity of the soil, which tells him if the soil is polluted.

"My initial objective was to do an experiment at the surface that would explain what was going on beneath the surface," said Frohlich, whose research was funded by a $55,000 grant from the U.S. Environmental Protection Agency.


Resistivity measurements, which calculate a material’s opposition to the flow of electric current, are widely used to track contaminated salts dissolved in groundwater because they are good conductors of electricity. But Frohlich’s experiments focused on finding organic compounds like toluene, benzene, xylene, ethylbenzene, phenol and other cancer-causing substances that do not conduct electricity.

"Our system seems to work very well on all organic compounds. Resistivity increases significantly in areas where the aquifer is polluted compared to clean areas," he said. "We should be able to use this as the first step in the remediation process because it’s quicker and allows us to drill fewer borings into the aquifer." Frohlich tested his system at the Picillo Pig Farm in West Coventry, a Superfund site where illegal dumping of chemical waste was discovered following an explosion in 1978. The R.I. Department of Environmental Management and the EPA have been monitoring and cleaning the site for more than 20 years.

"The Picillo Farm is a suitable site for our experiments because the results can be compared with the many monitoring wells and other analyses that have been conducted there over the years," Frohlich said. In addition to field tests at the Picillo Farm, Frohlich conducted controlled laboratory tests comparing clean soil with contaminated soil of known composition.

His study will next attempt to quantify the amount of contaminants at a given location. "It’s one thing to identify a clean or contaminated site, but we want to also get a quantitative value for the contaminants," said Frohlich. "That’s something that the EPA would really like to be able to do."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>