Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia University researchers find key to the formation of new seafloor spreading centers

29.11.2002


A new model of mid-ocean ridge propagation: Introducing the process zone



The site of extensive volcanic activity and sea-floor spreading, the Galapagos Rise in the eastern equatorial Pacific Ocean has yielded groundbreaking research results for the field of plate tectonics. Jacqueline Floyd and her colleagues, all of Columbia University’s Lamont-Doherty Earth Observatory, are introducing a new model for the process of mid-ocean ridge propagation (lengthening), which is responsible for seafloor spreading and the consequent formation of ocean basins. Their study is featured as this week’s cover story in the scientific journal Science.

Using recently recorded earthquake data that had not been available to previous models, the researchers show that mid-ocean ridge propagation is preceded by a complex breakdown process and earthquake activity that allows the ridge to lengthen stably in the brittle crust of the ocean’s lithosphere, independent of the enormous resisting forces proposed by previous models.


"Previous investigators idealized mid-ocean ridges as perfect cracks in the oceanic crust, but our results show that the seismicity and crustal structure around the ridge tip is more complex. This has critical implications for our ideas of how the crust rifts apart to form a new seafloor spreading center," said Floyd. "The hydroacoustic seismicity data were critical for making these observations since the magnitudes of the earthquakes in Hess Deep lie below the magnitude threshold of global teleseismic networks. The earthquake data show a concentration of earthquake activity at the tip of the Galapagos rise in Hess Deep that we almost immediately recognized as being similar to acoustic emission patterns observed at the tips of propagating cracks in the laboratory. The strikingly similar seismicity and faulting patterns allowed us to apply principles from fracture mechanics studies in the lab, at scales of centimeters or less, to the problem of mid-ocean ridge propagation in the oceanic crust, at the scales of 10s of kilometers and more."

By examining earthquake data and the topography of the Hess Deep rift, an enormous underwater canyon at the western tip of the Galapagos Rise, the researchers found that what makes an underwater ridge lengthen is more complex in comparison to previous theories. The researchers observe that small-magnitude earthquakes and micro cracking in a region called the process zone precede propagation, and are followed by nucleation of the rift axis and upwelling of magma, which leads to seafloor spreading.

Computer modeling of the stress field at the Hess Deep rift supports the authors’ interpretation of the seismicity data as resulting from rifting at the tip of a crack-like mid-ocean ridge in the oceanic plate.

Hess Deep was an excellent place to test prevailing models of ridge propagation because it is a relatively simple structure, its tectonic history is well understood, it has minimal sediment cover, and a long-term record of seismicity was available.

This new understanding of mid-ocean ridge propagation in Hess Deep can now be applied to more complex rift settings in both the oceans and the continents.


###
To receive an abstract of this paper, please contact Science magazine at 202-326-6440.

Jacqueline Floyd is a Faculty Fellow and Ph.D. Candidate with the Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists continue to provide the basic knowledge of Earth systems that must inform the future health and habitability of our planet. Her co-authors on the study are Maya Tolstoy, John Mutter, and Christopher Scholz, all of Columbia’s Lamont-Doherty Earth Observatory.

The Lamont-Doherty Earth Observatory is a research unit of the Earth Institute at Columbia University, the world’s pioneer academic center for mobilizing the sciences and public policy in pursuit of a sustainable future, especially for the world’s poor. Its director is international economist Jeffrey D. Sachs. More than 800 scientists with strength in Earth science, ecology, health, social science or engineering are working together to reduce poverty, hunger, disease and environmental degradation. The Institute brings their creative knowledge to bear through teaching, research and outreach in dozens of countries around the world. In all it does, the Earth Institute remains mindful of the staggering disparities between rich and poor nations and the tremendous impact that global-scale problems – from the AIDS pandemic to climate change to extreme poverty in much of the developing world – will have on all nations.

Mary Tobin | EurekAlert!
Further information:
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>