Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collapse Area Can Be Predetermined

27.11.2002


Collapse in the mines can be foreseen in advance and the caving-in location and time can be identified. This has become possible due to the basic research carried out by scientists of the Ioffe Physical & Engineering Institute, Russian Academy of Sciences. Specialists of INTERUNIS company have undertaken to embody the above concepts in a prototype model of the device.

The system will consist of the ’’case on wheels’’ containing the computer and signal processing cards, and several sensors (16 sensors are planned to be installed in a test sample) connected to the computer by cables. The sensors will be immured in the walls of the mine or of any other underground depositary to be surveyed. The sensors catch elastic waves emitted by rock while breaking up, once a certain threshold value is reached, the device will produce danger warning and will indicate the exact location where the breaking-down is going to take place.

The researchers have proceeded from the fact that rock does not disrupt at an instant, the breaking-down is sometimes preceded by a lengthy period of strain accumulation. Initially, small bed joints are formed in different locations, the process can last pretty long, but when the bed joints become numerous, they immediately combine into large cracks and emit elastic waves of major energy - at this point, the process becomes critical. During major earthquakes, breakings dissect the earth surface and can be as long as several kilometers, but the way they are formed is similar to the one taking place underground. Therefore, the method of the threat area determination proposed by the physicists headed by professor Kuksenko is also applicable to forecasting major calamities.



Similar devices are being currently produced outside Russia, but such systems are intended for a narrow frequency band and can track the rock volume of 10 through 100 cubic meters. The Russian scientists are planning to develop a device which will analyze a wide band of waves and determine the break-up area at the distance of several kilometers. The device testing will be carried out in real-life environment: in a mine or an underground waste liquids depositary.

Tatiana Pitchugina | alfa

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>