Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural radioactivity used to determine seasonal changes in groundwater supply

22.11.2002


The discharge of groundwater to coastal waters represents an important source of dissolved nutrients and contaminants that may affect chemical and biological processes in coastal ecosystems. In a journal article published in a recent issue of Limnology and Oceanography, URI Graduate School of Oceanography chemical oceanographers Roger P. Kelly and S. Bradley Moran describe how they used radium isotopes as tracers to determine seasonal changes in groundwater input to the Pettasquamscutt estuary from June 1999 to June 2000.

Radioactive isotopes of the naturally occurring element radium have recently been used as tracers of groundwater input to coastal zones. None of these studies, however, have evaluated seasonal changes in groundwater input. Measuring seasonal changes, as opposed to total input over the course of a year, provides scientists and managers with a more accurate understanding of coastal ecosystems as well as information about the periods of greatest impact over the annual cycle.

The Pettasquamscutt estuary, locally known as the Narrow River, is located adjacent to Narragansett Bay in southern Rhode Island and discharges into Rhode Island Sound. The estuary is approximately 6.5 miles long and has an average depth of 6 feet. Previous studies of the Pettasquamscutt estuary have determined that up to 50% of the freshwater input may be from groundwater.



Radium isotopes in the groundwater of the Pettasquamscutt are derived naturally from the weathering of the underlying metasediment and granite bedrock within the watershed. Using a mathematical model that considers the exchange of water between the river and Rhode Island Sound, the amount of radium desorbed from particles suspended in the water, and groundwater supply, Kelly and Moran observed seasonal changes in groundwater input to the estuary by measuring the excess radium derived from groundwater.

They determined that groundwater input was highest in the summer, lowest in the winter, and intermediate in the spring and fall. Kelly and Moran also estimated the quantity of inorganic nitrogen and phosphorous supplied by groundwater. They speculate that seasonal changes in groundwater supply of these nutrients may influence the occurrence of phytoplankton bloom events in such coastal systems through the annual cycle.

"There is a real need for reliable data on groundwater supply as demands on fresh water reservoirs continue to increase," said Moran.



The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeological Oceanography, and the National Sea Grant Library.


Lisa Cugini | EurekAlert!
Further information:
http://aslo.org/lo/toc/vol_47/issue_6/1976.pdf

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>