Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-billion-year-old Surprise Found Beneath The Azores

21.11.2002


Geologists may have to revise their ideas about what goes on in the Earth’s interior, following the publication today of new research in the journal ’Nature’. It appears that contrary to previous belief, part of the interior has remained undisturbed for at least two-and-a-half billion years, in spite of the massive forces at work inside the planet.



Like a saucepan of thick syrup being heated on the stove, huge convection currents within the Earth, generated by heat from the core, have stirred up the interior for most of its four-and-a-half billion year history. This has led geologists to believe that the interior is now well mixed. But Dr Simon Turner and Professor Chris Hawkesworth from the Earth Sciences Department at Bristol University, with colleagues at the Open University, have new data that suggest the presence of extremely ancient material beneath the Azores.

The islands of the Azores are volcanoes that sit either side of the Mid-Atlantic Ridge, a huge mountain chain beneath the ocean that formed as hot material from the Earth’’s interior rose to the surface. In some places, such as the Azores, the tops of these mountains form islands. The lavas from the Azores volcanoes appear to have been derived from some of the oldest material yet discovered within the convecting and well stirred part of the Earth.


One of the few ways to obtain information about the processes that go on in the Earth’’s interior is to analyse material that is brought up from these depths. The researchers therefore analysed the ratios of certain elements in the lavas that specifically characterise the source material they were derived from.

Dr Turner said: "The osmium ratios obtained in some of the Azores rocks are among the lowest ever seen in oceanic lavas. This indicates that the region from which the lavas were derived contained material that was left behind when continents were formed about two-and-a-half billion years ago. This depleted material was subsequently recycled back into the interior beneath the volcanic islands, where it has remained ever since."

The fact that such old material could reside in the Earth’’s interior for so long without being recycled will help inform new models about processes that go on inside the Earth.

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>