Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-billion-year-old Surprise Found Beneath The Azores

21.11.2002


Geologists may have to revise their ideas about what goes on in the Earth’s interior, following the publication today of new research in the journal ’Nature’. It appears that contrary to previous belief, part of the interior has remained undisturbed for at least two-and-a-half billion years, in spite of the massive forces at work inside the planet.



Like a saucepan of thick syrup being heated on the stove, huge convection currents within the Earth, generated by heat from the core, have stirred up the interior for most of its four-and-a-half billion year history. This has led geologists to believe that the interior is now well mixed. But Dr Simon Turner and Professor Chris Hawkesworth from the Earth Sciences Department at Bristol University, with colleagues at the Open University, have new data that suggest the presence of extremely ancient material beneath the Azores.

The islands of the Azores are volcanoes that sit either side of the Mid-Atlantic Ridge, a huge mountain chain beneath the ocean that formed as hot material from the Earth’’s interior rose to the surface. In some places, such as the Azores, the tops of these mountains form islands. The lavas from the Azores volcanoes appear to have been derived from some of the oldest material yet discovered within the convecting and well stirred part of the Earth.


One of the few ways to obtain information about the processes that go on in the Earth’’s interior is to analyse material that is brought up from these depths. The researchers therefore analysed the ratios of certain elements in the lavas that specifically characterise the source material they were derived from.

Dr Turner said: "The osmium ratios obtained in some of the Azores rocks are among the lowest ever seen in oceanic lavas. This indicates that the region from which the lavas were derived contained material that was left behind when continents were formed about two-and-a-half billion years ago. This depleted material was subsequently recycled back into the interior beneath the volcanic islands, where it has remained ever since."

The fact that such old material could reside in the Earth’’s interior for so long without being recycled will help inform new models about processes that go on inside the Earth.

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>