Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-billion-year-old Surprise Found Beneath The Azores

21.11.2002


Geologists may have to revise their ideas about what goes on in the Earth’s interior, following the publication today of new research in the journal ’Nature’. It appears that contrary to previous belief, part of the interior has remained undisturbed for at least two-and-a-half billion years, in spite of the massive forces at work inside the planet.



Like a saucepan of thick syrup being heated on the stove, huge convection currents within the Earth, generated by heat from the core, have stirred up the interior for most of its four-and-a-half billion year history. This has led geologists to believe that the interior is now well mixed. But Dr Simon Turner and Professor Chris Hawkesworth from the Earth Sciences Department at Bristol University, with colleagues at the Open University, have new data that suggest the presence of extremely ancient material beneath the Azores.

The islands of the Azores are volcanoes that sit either side of the Mid-Atlantic Ridge, a huge mountain chain beneath the ocean that formed as hot material from the Earth’’s interior rose to the surface. In some places, such as the Azores, the tops of these mountains form islands. The lavas from the Azores volcanoes appear to have been derived from some of the oldest material yet discovered within the convecting and well stirred part of the Earth.


One of the few ways to obtain information about the processes that go on in the Earth’’s interior is to analyse material that is brought up from these depths. The researchers therefore analysed the ratios of certain elements in the lavas that specifically characterise the source material they were derived from.

Dr Turner said: "The osmium ratios obtained in some of the Azores rocks are among the lowest ever seen in oceanic lavas. This indicates that the region from which the lavas were derived contained material that was left behind when continents were formed about two-and-a-half billion years ago. This depleted material was subsequently recycled back into the interior beneath the volcanic islands, where it has remained ever since."

The fact that such old material could reside in the Earth’’s interior for so long without being recycled will help inform new models about processes that go on inside the Earth.

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>