Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence that El Niño influences global climate conditions on a 2,000-year cycle

14.11.2002


Study by researchers from Syracuse University, Syracuse, N.Y., and Union College, Schenectady, N.Y., to be published in the Nov. 14 issue of Nature



El Niño, the pattern that can wreak havoc on climate conditions around the world, is like a beacon, pulsating through time on a 2,000 year cycle, according to a new study by scientists from Syracuse University, Syracuse, N.Y.; Union College, Schenectady, N.Y., and from the NOAA Paleoclimatology Program, Boulder, Colo., that is being published in the Nov. 14 issue of Nature.

The study, which resulted from a detailed analysis of a continuous 10,000-year record of El Niño events from a lake in southern Ecuador, is the first documented evidence that such a millennial cycle exists for El Niño. The researchers found that the frequency of El Niño events peaked about 1,200 years ago, or during the early Middle Ages. If the pattern continues into the future, there should be an increase in El Niño events in the early part of the 22nd century, the scientists say.


"El Niño operates within its own kind of 2,000-year rhythm, and because of that, we believe these periodic changes have had a major impact on global climate conditions over the past 10,000 years," says Christopher Moy G’00, the lead author of the study and a 2000 graduate of Syracuse University. "El Niño is one of the primary forces that can alter climate around the globe during a short period of time."

The study is the result of work Moy did as a graduate student in the Department of Earth Sciences in Syracuse University’s College of Arts and Sciences for his master’s thesis. His advisor was Prof. Geoffrey Seltzer. In a 1999 study published in Science, Seltzer and Donald T. Rodbell, who was Moy’s undergraduate advisor at Union College, discovered the first continuous record of El Niño events that dated back more than 5,000 years. That study was based on sediment samples taken in 1993 from the same lake in southern Ecuador--Lake Pallcacocha--as part of a larger global climate study on which they were collaborating.

This new study of El Niño events is based on another set of sediment cores taken in 1999 from Lake Pallcacocha, which is located in the Andes Mountains. The National Science Foundation funded the research.

Characterized by warm sea surface temperatures that appear off the western coast of South America, modern El Niño events cause dramatic changes in the weather systems across both the North and South American continents--from tumultuous rainfall in northern Peru and southern Ecuador to unusually warm and dry conditions in the northeastern United States.

Like the 1993 sediment core samples, the new core samples contain a series of light-colored sediment layers that contain the type of debris that would flow into the lake during periods of intense precipitation. In his analysis of the sediment layers, Moy confirmed results from the first study--that scattered El Niño events began about 10,000 years ago and steadily increased in frequency beginning about 7,000 years ago. In addition to that, he uncovered high-frequency clusters of El Niño events occurring on a 2,000-year cycle.

"About every 2,000 years, we see a lot of El Niño activity," says Moy, who is currently a graduate student at Stanford University and plans to pursue a Ph.D. in geology and environmental science. "This oscillation has not been seen in any other study of climate records of this area of the world, which makes this study unique. El Niño is an important part of our modern-day climate system. Likewise, our study shows it was also an important part of the earth’s climate system 7,000 years ago. Understanding the past will help us to better understand future climate changes."

Seltzer says that Moy’s study sheds new light on a tropical phenomenon that can radically alter climate conditions in a relatively short period of time. "We are extremely excited and pleased that the research Chris did as a Syracuse University graduate student is now being published in a premier, international journal and that he is moving toward greater accomplishments in the field. It’s the ultimate outcome for our program and of a student-centered research university like Syracuse University."

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>