Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence that El Niño influences global climate conditions on a 2,000-year cycle

14.11.2002


Study by researchers from Syracuse University, Syracuse, N.Y., and Union College, Schenectady, N.Y., to be published in the Nov. 14 issue of Nature



El Niño, the pattern that can wreak havoc on climate conditions around the world, is like a beacon, pulsating through time on a 2,000 year cycle, according to a new study by scientists from Syracuse University, Syracuse, N.Y.; Union College, Schenectady, N.Y., and from the NOAA Paleoclimatology Program, Boulder, Colo., that is being published in the Nov. 14 issue of Nature.

The study, which resulted from a detailed analysis of a continuous 10,000-year record of El Niño events from a lake in southern Ecuador, is the first documented evidence that such a millennial cycle exists for El Niño. The researchers found that the frequency of El Niño events peaked about 1,200 years ago, or during the early Middle Ages. If the pattern continues into the future, there should be an increase in El Niño events in the early part of the 22nd century, the scientists say.


"El Niño operates within its own kind of 2,000-year rhythm, and because of that, we believe these periodic changes have had a major impact on global climate conditions over the past 10,000 years," says Christopher Moy G’00, the lead author of the study and a 2000 graduate of Syracuse University. "El Niño is one of the primary forces that can alter climate around the globe during a short period of time."

The study is the result of work Moy did as a graduate student in the Department of Earth Sciences in Syracuse University’s College of Arts and Sciences for his master’s thesis. His advisor was Prof. Geoffrey Seltzer. In a 1999 study published in Science, Seltzer and Donald T. Rodbell, who was Moy’s undergraduate advisor at Union College, discovered the first continuous record of El Niño events that dated back more than 5,000 years. That study was based on sediment samples taken in 1993 from the same lake in southern Ecuador--Lake Pallcacocha--as part of a larger global climate study on which they were collaborating.

This new study of El Niño events is based on another set of sediment cores taken in 1999 from Lake Pallcacocha, which is located in the Andes Mountains. The National Science Foundation funded the research.

Characterized by warm sea surface temperatures that appear off the western coast of South America, modern El Niño events cause dramatic changes in the weather systems across both the North and South American continents--from tumultuous rainfall in northern Peru and southern Ecuador to unusually warm and dry conditions in the northeastern United States.

Like the 1993 sediment core samples, the new core samples contain a series of light-colored sediment layers that contain the type of debris that would flow into the lake during periods of intense precipitation. In his analysis of the sediment layers, Moy confirmed results from the first study--that scattered El Niño events began about 10,000 years ago and steadily increased in frequency beginning about 7,000 years ago. In addition to that, he uncovered high-frequency clusters of El Niño events occurring on a 2,000-year cycle.

"About every 2,000 years, we see a lot of El Niño activity," says Moy, who is currently a graduate student at Stanford University and plans to pursue a Ph.D. in geology and environmental science. "This oscillation has not been seen in any other study of climate records of this area of the world, which makes this study unique. El Niño is an important part of our modern-day climate system. Likewise, our study shows it was also an important part of the earth’s climate system 7,000 years ago. Understanding the past will help us to better understand future climate changes."

Seltzer says that Moy’s study sheds new light on a tropical phenomenon that can radically alter climate conditions in a relatively short period of time. "We are extremely excited and pleased that the research Chris did as a Syracuse University graduate student is now being published in a premier, international journal and that he is moving toward greater accomplishments in the field. It’s the ultimate outcome for our program and of a student-centered research university like Syracuse University."

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu/

More articles from Earth Sciences:

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

nachricht Thawing permafrost releases old greenhouse gas
19.07.2017 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>