Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New evidence that El Niño influences global climate conditions on a 2,000-year cycle


Study by researchers from Syracuse University, Syracuse, N.Y., and Union College, Schenectady, N.Y., to be published in the Nov. 14 issue of Nature

El Niño, the pattern that can wreak havoc on climate conditions around the world, is like a beacon, pulsating through time on a 2,000 year cycle, according to a new study by scientists from Syracuse University, Syracuse, N.Y.; Union College, Schenectady, N.Y., and from the NOAA Paleoclimatology Program, Boulder, Colo., that is being published in the Nov. 14 issue of Nature.

The study, which resulted from a detailed analysis of a continuous 10,000-year record of El Niño events from a lake in southern Ecuador, is the first documented evidence that such a millennial cycle exists for El Niño. The researchers found that the frequency of El Niño events peaked about 1,200 years ago, or during the early Middle Ages. If the pattern continues into the future, there should be an increase in El Niño events in the early part of the 22nd century, the scientists say.

"El Niño operates within its own kind of 2,000-year rhythm, and because of that, we believe these periodic changes have had a major impact on global climate conditions over the past 10,000 years," says Christopher Moy G’00, the lead author of the study and a 2000 graduate of Syracuse University. "El Niño is one of the primary forces that can alter climate around the globe during a short period of time."

The study is the result of work Moy did as a graduate student in the Department of Earth Sciences in Syracuse University’s College of Arts and Sciences for his master’s thesis. His advisor was Prof. Geoffrey Seltzer. In a 1999 study published in Science, Seltzer and Donald T. Rodbell, who was Moy’s undergraduate advisor at Union College, discovered the first continuous record of El Niño events that dated back more than 5,000 years. That study was based on sediment samples taken in 1993 from the same lake in southern Ecuador--Lake Pallcacocha--as part of a larger global climate study on which they were collaborating.

This new study of El Niño events is based on another set of sediment cores taken in 1999 from Lake Pallcacocha, which is located in the Andes Mountains. The National Science Foundation funded the research.

Characterized by warm sea surface temperatures that appear off the western coast of South America, modern El Niño events cause dramatic changes in the weather systems across both the North and South American continents--from tumultuous rainfall in northern Peru and southern Ecuador to unusually warm and dry conditions in the northeastern United States.

Like the 1993 sediment core samples, the new core samples contain a series of light-colored sediment layers that contain the type of debris that would flow into the lake during periods of intense precipitation. In his analysis of the sediment layers, Moy confirmed results from the first study--that scattered El Niño events began about 10,000 years ago and steadily increased in frequency beginning about 7,000 years ago. In addition to that, he uncovered high-frequency clusters of El Niño events occurring on a 2,000-year cycle.

"About every 2,000 years, we see a lot of El Niño activity," says Moy, who is currently a graduate student at Stanford University and plans to pursue a Ph.D. in geology and environmental science. "This oscillation has not been seen in any other study of climate records of this area of the world, which makes this study unique. El Niño is an important part of our modern-day climate system. Likewise, our study shows it was also an important part of the earth’s climate system 7,000 years ago. Understanding the past will help us to better understand future climate changes."

Seltzer says that Moy’s study sheds new light on a tropical phenomenon that can radically alter climate conditions in a relatively short period of time. "We are extremely excited and pleased that the research Chris did as a Syracuse University graduate student is now being published in a premier, international journal and that he is moving toward greater accomplishments in the field. It’s the ultimate outcome for our program and of a student-centered research university like Syracuse University."

Judy Holmes | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>