Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence that El Niño influences global climate conditions on a 2,000-year cycle

14.11.2002


Study by researchers from Syracuse University, Syracuse, N.Y., and Union College, Schenectady, N.Y., to be published in the Nov. 14 issue of Nature



El Niño, the pattern that can wreak havoc on climate conditions around the world, is like a beacon, pulsating through time on a 2,000 year cycle, according to a new study by scientists from Syracuse University, Syracuse, N.Y.; Union College, Schenectady, N.Y., and from the NOAA Paleoclimatology Program, Boulder, Colo., that is being published in the Nov. 14 issue of Nature.

The study, which resulted from a detailed analysis of a continuous 10,000-year record of El Niño events from a lake in southern Ecuador, is the first documented evidence that such a millennial cycle exists for El Niño. The researchers found that the frequency of El Niño events peaked about 1,200 years ago, or during the early Middle Ages. If the pattern continues into the future, there should be an increase in El Niño events in the early part of the 22nd century, the scientists say.


"El Niño operates within its own kind of 2,000-year rhythm, and because of that, we believe these periodic changes have had a major impact on global climate conditions over the past 10,000 years," says Christopher Moy G’00, the lead author of the study and a 2000 graduate of Syracuse University. "El Niño is one of the primary forces that can alter climate around the globe during a short period of time."

The study is the result of work Moy did as a graduate student in the Department of Earth Sciences in Syracuse University’s College of Arts and Sciences for his master’s thesis. His advisor was Prof. Geoffrey Seltzer. In a 1999 study published in Science, Seltzer and Donald T. Rodbell, who was Moy’s undergraduate advisor at Union College, discovered the first continuous record of El Niño events that dated back more than 5,000 years. That study was based on sediment samples taken in 1993 from the same lake in southern Ecuador--Lake Pallcacocha--as part of a larger global climate study on which they were collaborating.

This new study of El Niño events is based on another set of sediment cores taken in 1999 from Lake Pallcacocha, which is located in the Andes Mountains. The National Science Foundation funded the research.

Characterized by warm sea surface temperatures that appear off the western coast of South America, modern El Niño events cause dramatic changes in the weather systems across both the North and South American continents--from tumultuous rainfall in northern Peru and southern Ecuador to unusually warm and dry conditions in the northeastern United States.

Like the 1993 sediment core samples, the new core samples contain a series of light-colored sediment layers that contain the type of debris that would flow into the lake during periods of intense precipitation. In his analysis of the sediment layers, Moy confirmed results from the first study--that scattered El Niño events began about 10,000 years ago and steadily increased in frequency beginning about 7,000 years ago. In addition to that, he uncovered high-frequency clusters of El Niño events occurring on a 2,000-year cycle.

"About every 2,000 years, we see a lot of El Niño activity," says Moy, who is currently a graduate student at Stanford University and plans to pursue a Ph.D. in geology and environmental science. "This oscillation has not been seen in any other study of climate records of this area of the world, which makes this study unique. El Niño is an important part of our modern-day climate system. Likewise, our study shows it was also an important part of the earth’s climate system 7,000 years ago. Understanding the past will help us to better understand future climate changes."

Seltzer says that Moy’s study sheds new light on a tropical phenomenon that can radically alter climate conditions in a relatively short period of time. "We are extremely excited and pleased that the research Chris did as a Syracuse University graduate student is now being published in a premier, international journal and that he is moving toward greater accomplishments in the field. It’s the ultimate outcome for our program and of a student-centered research university like Syracuse University."

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu/

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>