Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists’ model reveals foundation flaws in bedrock under new urban centers

13.11.2002


Before developers decide to make the desert bloom, they better take a look at what’s under the surface of the Earth.



That’s the conclusion of research by Texas A&M University geologist Mohamed Aly, who’s using GIS (geographic information systems) techniques to conduct engineering geomorphology assessments of some of Egypt’s newest urban developments to predict - and thus avoid - foundation problems stemming from instabilities in the underlying bedrock.

The resulting GIS model may also be used to study similar new developments worldwide.


"For the past 50 years, the Egyptian government has encouraged the building of new cities in the desert, away from the Nile valley and its delta, where 96 percent of the Egyptian population lives," said Aly, a doctoral student in the Department of Geology and Geophysics of the College of Geosciences. "New Minia City is one of 16 developments being built in the desert over the last few years. It is still close to the Nile, from which it gets its drinking water and to Old Minia City, which supplies surface necessities.

"While New Minia City is in the early stages of construction, its planners wanted an assessment of any geo-environmental problems that might occur," he continued. "Our study revealed that some areas of proposed development were underlain by soft highly fractured and jointed limestone, which is prone to dissolution by acidic rainfall, creating sink holes and caves in the heterogeneous bedrock."

Other new Egyptian cities had not investigated their bedrock foundations before building, creating later problems and leading authorities to seek the advice of geologists like Aly, who, along with being a student in Texas, holds an assistant lecturer appointment at Zagazig University, Egypt.

Aly and advisers John Giardino, dean of graduate studies and professor of geology and geophysics, and Andrew Klein, professor in the geography department, developed a GIS model to assess New Minia City’s site risk, urban development suitability and land use potentials. Aly presented a paper on their model at this month’s annual meeting of the Geological Society of America.

GIS produces a digitally registered geographic database from data layers obtained from different sources, such as satellite remote sensing and seismic ground testing. Aly’s model system used data layers including geology, land use/cover, soil types, karst distribution, fracture density, slope, stream ordering, roads and administrative boundaries.

"Our GIS model, which was found to be effective at revealing the foundation bedrock problems, was adopted locally to assess the area’s main geo-environmental problems threatening urban development of New Minia City," Aly said.

"We hope the model will provide a good base for informed decision-making in support of integrated sustainable development for New Minia City, allowing more geologically unstable areas to be used for agriculture or parks, instead of for housing or other structures. Finally, we recommend our GIS model be used not only for this city, but also for new cities with similar geologic and geomorphologic settings across the world."


###
Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu; Mohamed Aly, 979-862-9153, aly@tamu.edu.


Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>