Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists’ model reveals foundation flaws in bedrock under new urban centers

13.11.2002


Before developers decide to make the desert bloom, they better take a look at what’s under the surface of the Earth.



That’s the conclusion of research by Texas A&M University geologist Mohamed Aly, who’s using GIS (geographic information systems) techniques to conduct engineering geomorphology assessments of some of Egypt’s newest urban developments to predict - and thus avoid - foundation problems stemming from instabilities in the underlying bedrock.

The resulting GIS model may also be used to study similar new developments worldwide.


"For the past 50 years, the Egyptian government has encouraged the building of new cities in the desert, away from the Nile valley and its delta, where 96 percent of the Egyptian population lives," said Aly, a doctoral student in the Department of Geology and Geophysics of the College of Geosciences. "New Minia City is one of 16 developments being built in the desert over the last few years. It is still close to the Nile, from which it gets its drinking water and to Old Minia City, which supplies surface necessities.

"While New Minia City is in the early stages of construction, its planners wanted an assessment of any geo-environmental problems that might occur," he continued. "Our study revealed that some areas of proposed development were underlain by soft highly fractured and jointed limestone, which is prone to dissolution by acidic rainfall, creating sink holes and caves in the heterogeneous bedrock."

Other new Egyptian cities had not investigated their bedrock foundations before building, creating later problems and leading authorities to seek the advice of geologists like Aly, who, along with being a student in Texas, holds an assistant lecturer appointment at Zagazig University, Egypt.

Aly and advisers John Giardino, dean of graduate studies and professor of geology and geophysics, and Andrew Klein, professor in the geography department, developed a GIS model to assess New Minia City’s site risk, urban development suitability and land use potentials. Aly presented a paper on their model at this month’s annual meeting of the Geological Society of America.

GIS produces a digitally registered geographic database from data layers obtained from different sources, such as satellite remote sensing and seismic ground testing. Aly’s model system used data layers including geology, land use/cover, soil types, karst distribution, fracture density, slope, stream ordering, roads and administrative boundaries.

"Our GIS model, which was found to be effective at revealing the foundation bedrock problems, was adopted locally to assess the area’s main geo-environmental problems threatening urban development of New Minia City," Aly said.

"We hope the model will provide a good base for informed decision-making in support of integrated sustainable development for New Minia City, allowing more geologically unstable areas to be used for agriculture or parks, instead of for housing or other structures. Finally, we recommend our GIS model be used not only for this city, but also for new cities with similar geologic and geomorphologic settings across the world."


###
Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu; Mohamed Aly, 979-862-9153, aly@tamu.edu.


Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>