Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists’ model reveals foundation flaws in bedrock under new urban centers

13.11.2002


Before developers decide to make the desert bloom, they better take a look at what’s under the surface of the Earth.



That’s the conclusion of research by Texas A&M University geologist Mohamed Aly, who’s using GIS (geographic information systems) techniques to conduct engineering geomorphology assessments of some of Egypt’s newest urban developments to predict - and thus avoid - foundation problems stemming from instabilities in the underlying bedrock.

The resulting GIS model may also be used to study similar new developments worldwide.


"For the past 50 years, the Egyptian government has encouraged the building of new cities in the desert, away from the Nile valley and its delta, where 96 percent of the Egyptian population lives," said Aly, a doctoral student in the Department of Geology and Geophysics of the College of Geosciences. "New Minia City is one of 16 developments being built in the desert over the last few years. It is still close to the Nile, from which it gets its drinking water and to Old Minia City, which supplies surface necessities.

"While New Minia City is in the early stages of construction, its planners wanted an assessment of any geo-environmental problems that might occur," he continued. "Our study revealed that some areas of proposed development were underlain by soft highly fractured and jointed limestone, which is prone to dissolution by acidic rainfall, creating sink holes and caves in the heterogeneous bedrock."

Other new Egyptian cities had not investigated their bedrock foundations before building, creating later problems and leading authorities to seek the advice of geologists like Aly, who, along with being a student in Texas, holds an assistant lecturer appointment at Zagazig University, Egypt.

Aly and advisers John Giardino, dean of graduate studies and professor of geology and geophysics, and Andrew Klein, professor in the geography department, developed a GIS model to assess New Minia City’s site risk, urban development suitability and land use potentials. Aly presented a paper on their model at this month’s annual meeting of the Geological Society of America.

GIS produces a digitally registered geographic database from data layers obtained from different sources, such as satellite remote sensing and seismic ground testing. Aly’s model system used data layers including geology, land use/cover, soil types, karst distribution, fracture density, slope, stream ordering, roads and administrative boundaries.

"Our GIS model, which was found to be effective at revealing the foundation bedrock problems, was adopted locally to assess the area’s main geo-environmental problems threatening urban development of New Minia City," Aly said.

"We hope the model will provide a good base for informed decision-making in support of integrated sustainable development for New Minia City, allowing more geologically unstable areas to be used for agriculture or parks, instead of for housing or other structures. Finally, we recommend our GIS model be used not only for this city, but also for new cities with similar geologic and geomorphologic settings across the world."


###
Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu; Mohamed Aly, 979-862-9153, aly@tamu.edu.


Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>