Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GPS technology aids earthquake research

08.11.2002


Scientists’ understanding of the movement of the Earth’s crust is being helped by new observing facility which is taking measurements that may one day help predict earthquakes.



Newcastle University’s School of Civil Engineering and Geosciences has become only one of two UK centres feeding Global Positioning System (GPS) data into the International GPS Service (IGS), which researchers and professionals throughout the world – including geophysicists - can access via the Internet. The other centre is the Royal Greenwich Observatory in Herstmonceux, East Sussex.

The data is collected via a GPS station 20 miles north of the city, at the University’s farm, Cockle Park, in Morpeth, Northumberland, which had to meet stringent IGS standards. The distances between a circular antenna and and the GPS satellites above are measured every 15 seconds. The antenna, which is 40cm across and 15cm high, is firmly fixed in a 4.5 tonne slab of 300 million year old sandstone from Yorkshire, which is in turn embedded almost three metres into the earth.


The information is automatically downloaded hourly into a computer which quickly checks the data for accuracy before transmitting it to the IGS. Over 200 sites across the world are transmitting data on a regular basis with the Newcastle antenna being the most north westerly in Europe.

The antenna gives more accurate measurements than the average GPS system because it is very stable, being firmly embedded into the earth. It will be able to gauge movements in the Earth’s crust in the North East of England, as when the Earth moves, the antenna moves with it - causing the measurements between it and the satellites to alter.

The highly accurate data could also help meteorological forecasts for the North East.

Distances between the antenna and the GPS satellites appear longer when there is water vapour in the atmosphere, as it can take a greater period of time for signals to be transmitted. These measurements can be used to compile weather forecasts.

Surveyors and other professionals taking less accurate GPS measurements in the field are likely to use this as a reference point against which they can check their own data. It is already being used in a number of university research projects involving GPS, such as the monitoring of North Sea oil platform subsidence.

Researcher Matt King said: “The recent earthquakes in Manchester and Italy have highlighted our need to better understand the movement of the Earth`s crust in England. Experience in California has shown that GPS measurements can make a valuable contribution to this understanding.

“The near real-time transmission of the data may also mean better weather forecasts for the region.

Dr King added: “The data submitted to the IGS is used to define the fundamental reference frame on which all modern survey measurements are based. Consequently, anyone making use of surveying or mapping products, such as Ordnance Survey maps, will benefit from this new project.”

Claire Jordan | alfa
Further information:
http://igscb.jpl.nasa.gov/
http://www.ceg.ncl.ac.uk/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>