Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean temperatures affect intensity of the South Asian monsoon and rainfall

06.11.2002


Warmer or colder sea surface temperatures (SST) may affect one of the world’s key large-scale atmospheric circulations that regulate the intensity and breaking of rainfall associated with the South Asian and Australian monsoons, according to new research from NASA.



A monsoon is a wind that changes direction with the seasons. Monsoons develop from changing patterns of atmospheric circulation which are caused by changes in heating and cooling of land and oceans. One of the strongest and most well-known monsoons is the one which affects India and Southeast Asia in June through September.

The summer monsoon blows southwesterly across the Indian Ocean and is extremely wet. During the summer monsoon, particularly in July, there is usually a break period in the monsoon, when the rains stop and re-start. A phenomenon known as the Madden Julian Oscillation (MJO) has been found to affect that break and the variation of the MJO is affected by the variation of the SSTs.


The MJO is the main fluctuation of atmospheric circulation that explains variations of weather in the tropics and that regulates south Asian monsoons. The variation of the MJO involves variations in wind, SST, cloudiness, and rainfall. The MJO can be characterized by a large-scale eastward movement of air in the upper troposphere with a period of about 20-70 days, over the tropical eastern Indian and western Pacific Oceans at approximately 7.5 miles (200 millibars) high in the atmosphere.

Man Li Wu, a researcher from NASA’s Goddard Space Flight Center in Greenbelt, Md., and lead author of the study, used computer models that simulate the atmosphere in the region. One of the purposes of this study is to examine to what extent intra-seasonal SST variations affect the MJO.

"Changes in SSTs will affect a large scale atmospheric circulation known as the MJO in the area of southern Asia, which regulates the variability of the monsoon," Wu said. The variation of the MJO coincides with the variation of tropical precipitation over the Indian Ocean and western Pacific Ocean. She noted that from observations the warmer sea surface temperatures are usually found 5 to 10 days before the strengthening of the precipitation on the MJO time scale.

Siegfried Schubert, a co-author on the paper from the Goddard Space Flight Center said that "the MJO plays an important role in the variability of the South Asian monsoons. Changes in SST may be responsible for between 15% and 30% of the fluctuations that occur in the strength of the MJO."

The ability of current computer models to simulate fluctuations of MJO is still in question. Wu said, "Improvements in predicting the MJO are an important step in making further progress in weather and climate prediction for areas affected by the monsoon. For weather forecasts, improved modeling of the MJO offers hope for extending the range of useful forecasts." For seasonal and climate prediction, the MJO is a key component.


###
These findings appear in the American Meteorological Society’s October 15th issue of the Journal of Climate, Volume 15, Number 20.

This research was funded under NASA’s Earth Science Enterprises Global Modeling and Analysis Program, dedicated to better understanding and protecting our home planet, and is a contribution to the CLIVAR/Monsoon Global Climate Model Intercomparison project. Support was also provided by the Atmospheric Sciences Division of the National Science Foundation.

Robert Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20021015monsoon.html
http://ww2.wrh.noaa.gov/climate_info/Madden-Julian_Oscillation.htm
http://www.cpc.ncep.noaa.gov/products/intraseasonal/intraseasonal_faq.html#how

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>