Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean temperatures affect intensity of the South Asian monsoon and rainfall

06.11.2002


Warmer or colder sea surface temperatures (SST) may affect one of the world’s key large-scale atmospheric circulations that regulate the intensity and breaking of rainfall associated with the South Asian and Australian monsoons, according to new research from NASA.



A monsoon is a wind that changes direction with the seasons. Monsoons develop from changing patterns of atmospheric circulation which are caused by changes in heating and cooling of land and oceans. One of the strongest and most well-known monsoons is the one which affects India and Southeast Asia in June through September.

The summer monsoon blows southwesterly across the Indian Ocean and is extremely wet. During the summer monsoon, particularly in July, there is usually a break period in the monsoon, when the rains stop and re-start. A phenomenon known as the Madden Julian Oscillation (MJO) has been found to affect that break and the variation of the MJO is affected by the variation of the SSTs.


The MJO is the main fluctuation of atmospheric circulation that explains variations of weather in the tropics and that regulates south Asian monsoons. The variation of the MJO involves variations in wind, SST, cloudiness, and rainfall. The MJO can be characterized by a large-scale eastward movement of air in the upper troposphere with a period of about 20-70 days, over the tropical eastern Indian and western Pacific Oceans at approximately 7.5 miles (200 millibars) high in the atmosphere.

Man Li Wu, a researcher from NASA’s Goddard Space Flight Center in Greenbelt, Md., and lead author of the study, used computer models that simulate the atmosphere in the region. One of the purposes of this study is to examine to what extent intra-seasonal SST variations affect the MJO.

"Changes in SSTs will affect a large scale atmospheric circulation known as the MJO in the area of southern Asia, which regulates the variability of the monsoon," Wu said. The variation of the MJO coincides with the variation of tropical precipitation over the Indian Ocean and western Pacific Ocean. She noted that from observations the warmer sea surface temperatures are usually found 5 to 10 days before the strengthening of the precipitation on the MJO time scale.

Siegfried Schubert, a co-author on the paper from the Goddard Space Flight Center said that "the MJO plays an important role in the variability of the South Asian monsoons. Changes in SST may be responsible for between 15% and 30% of the fluctuations that occur in the strength of the MJO."

The ability of current computer models to simulate fluctuations of MJO is still in question. Wu said, "Improvements in predicting the MJO are an important step in making further progress in weather and climate prediction for areas affected by the monsoon. For weather forecasts, improved modeling of the MJO offers hope for extending the range of useful forecasts." For seasonal and climate prediction, the MJO is a key component.


###
These findings appear in the American Meteorological Society’s October 15th issue of the Journal of Climate, Volume 15, Number 20.

This research was funded under NASA’s Earth Science Enterprises Global Modeling and Analysis Program, dedicated to better understanding and protecting our home planet, and is a contribution to the CLIVAR/Monsoon Global Climate Model Intercomparison project. Support was also provided by the Atmospheric Sciences Division of the National Science Foundation.

Robert Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20021015monsoon.html
http://ww2.wrh.noaa.gov/climate_info/Madden-Julian_Oscillation.htm
http://www.cpc.ncep.noaa.gov/products/intraseasonal/intraseasonal_faq.html#how

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>