Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DARE for planetary exploration

06.11.2002


Balloons outfitted with innovative steering devices and robot probes could be the future of planetary exploration. Dr. Alexey Pankine, a fellow at the NASA Institute for Advanced Concepts (NIAC), presented an analysis of balloon applications for planetary science at the World Space Congress in Houston, Texas last month. His study, entitled Directed Aerial Robot Explorers or DARE, is funded by NIAC.



At the center of the DARE concept are balloons that can float in planetary atmospheres for many days. Balloons have long been recognized as low-cost observational platforms and are routinely used in observations of the Earth’s atmosphere. In 1984, two balloons were successfully deployed in the atmosphere of Venus for a short mission. However, what has restrained the wider use of balloons in planetary exploration was the inability to control their paths in strong atmospheric winds. Attaching an engine to a balloon would convert it into an airship and make it too heavy, too power dependent and too expensive to send to another planet or high into the atmosphere.

Faced with this problem, Global Aerospace Corporation has proposed to use an innovative device called the StratoSail® that allows the user to control the path of a planetary balloon. The device is essentially a wing that hangs on a long tether (several kilometers) below the balloon. Strong winds and denser atmosphere at the wing altitude create a sideways lifting force that pulls the entire system across the winds.


The DARE concept analyzes the use of the StratoSail® device on several planets in our Solar System that have atmosphere – Venus, Mars, Jupiter and Titan (a satellite of Saturn). Dr. Pankine reports that a small, light wing will pull the balloon with a velocity of about 1 m/s across the winds on those planets. This may not seem much, but applied constantly (without consuming any power!) for the duration of a long mission (100 days) it would allow for pole-to-pole exploration of the atmospheres of Venus and Titan, and targeted observations of Mars and the vast Great Red Spot of Jupiter.

DARE platforms would carry high-resolution cameras and other instruments to study surfaces and atmospheres of the planets. Dr. Pankine envisions small probes being deployed from DARE platforms over a site of interest. These robot-probes would, for example, analyze atmosphere during their descent on Venus and Jupiter or crawl around after soft landing on the surfaces of Mars and Titan.

“The ability to alter the flight path in the atmosphere and to deploy the probes would vastly expand the capabilities of planetary balloons and make possible breakthrough observations that are not feasible with any other platform,” says Dr. Pankine. The figure illustrates a DARE platform operating at Venus.

Alexey A. Pankine | EurekAlert!
Further information:
http://www.gaerospace.com/press-releases/nov2002.html

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>