Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DARE for planetary exploration

06.11.2002


Balloons outfitted with innovative steering devices and robot probes could be the future of planetary exploration. Dr. Alexey Pankine, a fellow at the NASA Institute for Advanced Concepts (NIAC), presented an analysis of balloon applications for planetary science at the World Space Congress in Houston, Texas last month. His study, entitled Directed Aerial Robot Explorers or DARE, is funded by NIAC.



At the center of the DARE concept are balloons that can float in planetary atmospheres for many days. Balloons have long been recognized as low-cost observational platforms and are routinely used in observations of the Earth’s atmosphere. In 1984, two balloons were successfully deployed in the atmosphere of Venus for a short mission. However, what has restrained the wider use of balloons in planetary exploration was the inability to control their paths in strong atmospheric winds. Attaching an engine to a balloon would convert it into an airship and make it too heavy, too power dependent and too expensive to send to another planet or high into the atmosphere.

Faced with this problem, Global Aerospace Corporation has proposed to use an innovative device called the StratoSail® that allows the user to control the path of a planetary balloon. The device is essentially a wing that hangs on a long tether (several kilometers) below the balloon. Strong winds and denser atmosphere at the wing altitude create a sideways lifting force that pulls the entire system across the winds.


The DARE concept analyzes the use of the StratoSail® device on several planets in our Solar System that have atmosphere – Venus, Mars, Jupiter and Titan (a satellite of Saturn). Dr. Pankine reports that a small, light wing will pull the balloon with a velocity of about 1 m/s across the winds on those planets. This may not seem much, but applied constantly (without consuming any power!) for the duration of a long mission (100 days) it would allow for pole-to-pole exploration of the atmospheres of Venus and Titan, and targeted observations of Mars and the vast Great Red Spot of Jupiter.

DARE platforms would carry high-resolution cameras and other instruments to study surfaces and atmospheres of the planets. Dr. Pankine envisions small probes being deployed from DARE platforms over a site of interest. These robot-probes would, for example, analyze atmosphere during their descent on Venus and Jupiter or crawl around after soft landing on the surfaces of Mars and Titan.

“The ability to alter the flight path in the atmosphere and to deploy the probes would vastly expand the capabilities of planetary balloons and make possible breakthrough observations that are not feasible with any other platform,” says Dr. Pankine. The figure illustrates a DARE platform operating at Venus.

Alexey A. Pankine | EurekAlert!
Further information:
http://www.gaerospace.com/press-releases/nov2002.html

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>