Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three ESA satellites reveal Etna’s complexity

31.10.2002


As detected by ESA satellite sensors, the recent eruptions of the Mount Etna volcano in Sicily are throwing huge amounts of ash and trace gases into the atmosphere. Working with data from the Global Ozone Monitoring Experiment (GOME) sensor onboard ESA’s ERS-2 spacecraft, scientists at the German aerospace centre (DLR) report that levels of sulphur dioxide from the eruptions on Sunday and Monday are at least 20 times higher than normal.


A plume of smoke and ash from Sicily’s Mount Etna is seen in this image acquired 28 October 2002 by the Medium Resolution Imaging Spectrometer (MERIS) instrument onboard ESA’s Envisat Satellite
Credits: ESA



As detected by ESA satellite sensors, the recent eruptions of the Mount Etna volcano in Sicily are throwing huge amounts of ash and trace gases into the atmosphere. Sensors onboard three different ESA spacecraft have acquired imagery of the eruptions that shed new light on the event and its impact on the Earth’s environment.
Working with data from the Global Ozone Monitoring Experiment (GOME) sensor onboard ESA’s ERS-2 spacecraft, scientists at the German aerospace centre (DLR) report that levels of sulphur dioxide from the eruptions on Sunday and Monday are at least 20 times higher than normal.

This latest activity from Mt. Etna, the second in a little over a year, marks the beginning of another period of activity of Europe’s largest volcano, says Werner Thomas, an atmospheric scientist with DLR’s Remote Sensing Technology Institute.



“As in July and August 2001 eruptions of Etna, dense ash clouds and gaseous emissions were again detected by several space-borne sensors,” he said.

The normal background level of sulphur dioxide is typically below 0.5 Dobson Units (DU), a measure of atmospheric gas concentrations from ground level to the top of the atmosphere, about 70 km in altitude.

"In the plume, we measured atmospheric content of sulphur dioxide of about 10 DU, at least 20 times higher than normal," Thomas said.

Sulphur dioxide in the troposphere, the lowest part of the atmosphere where most weather changes occur, is known to be responsible for the so-called "acid rain" phenomenon. Stratospheric sulphur dioxide, from about 11 km to 50 km above the Earth’s surface, causes the formation of sulphate aerosol particles that may have a serious impact on the global climate. Mt. Etna is one of the most prominent sources of natural sulphur dioxide worldwide.

The ERS’ GOME instrument is dedicated for remote sensing of the atmosphere and can detect a variety of atmospheric trace gases, including sulphur dioxide. The first GOME data after the beginning of the eruptions was recorded and analysed on 29 October around 10:15 UTC. As seen in the accompanying chart, enhanced levels of sulphur dioxide are evident in the southeast of Sicily, indicating that the tropospheric sulphur dioxide was carried away from the volcano by the winds in that direction.

The Italian government declared a state of emergency yesterday in Sicily in the wake a series of earthquakes, measuring between 3.6 and 4.3 on the Richter scale, that forced the evacuation of approximately 1 000 homes, according to reports from BBC and Italian newspapers. Meanwhile, three streams of lava from the eruption flowed down the south, northeast and northwest slopes of the mountains, media reports stated.

Europe’s highest and most active volcano (3370 m) hurled lava and ash from several craters into the sky with a speed between 350 and 450 metres per second, exceeding the speed of sound. According to data from volcanologists, the lava and ash were ejected from the main crater and from at least nine new craters that developed in the mountain between 2300 to 2700 metres in altitude.

As seen in the image acquired Monday by the Medium Resolution Imaging Spectrometer (MERIS) onboard ESA’s Envisat satellite, the eruptions spewed significant amounts of ash, along with sulphur dioxide, into the atmosphere The plume from the volcano can be seen in the image stretching south and west from Sicily to the north African coast. The larger volcanic ash particles are expected to settle out in a short period of time, but the sulphuric acid aerosols produced by the sulphur dioxide will persist for several years.

These aerosols will impact the Earth’s energy budget, both regionally and on a global scale. Aerosols containing black graphite and carbon particles are dark, thus absorbing sunlight. As these atmospheric particles reduce the amount of sunlight reaching the planet’s surface, they increase the amount of solar energy absorbed in the atmosphere, thus simultaneously cooling the surface and warming the atmosphere.

The capability of the MERIS instrument to observe the spatial distribution of these aerosol plumes can be exploited to measure the amounts of airborne particles and to examine the role of these aerosols as cloud condensation nuclei and their impact on the hydrologic cycle through changes in cloud cover, cloud properties and precipitation.

Today’s images from Proba

Just 60x60x80 cm and weighing only 94 kg, ESA’s Project for On-Board Autonomy satellite, better known as Proba, is one of the most advanced small satellites ever flown in space.

Since its launch last year, Proba’s high-performing computer system and technologically advanced instruments have enabled it to demonstrate and evaluate onboard operational autonomy, new spacecraft technology both hardware and software, and to test Earth observation and space environment instruments in space.

The imagery captured today by Proba demonstrate the capabilities of CHRIS, the Compact High Resolution Imaging Spectrometer, which is providing important information on the Earth and its environment, and will be a valuable tool in remote sensing during the extended mission.

The instrument acquired the accompanying Etna images in four standard bands, although the instrument is capable of image acquisition in up to 19 different bands.

Erica Rolfe | ESA

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>