Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three ESA satellites reveal Etna’s complexity

31.10.2002


As detected by ESA satellite sensors, the recent eruptions of the Mount Etna volcano in Sicily are throwing huge amounts of ash and trace gases into the atmosphere. Working with data from the Global Ozone Monitoring Experiment (GOME) sensor onboard ESA’s ERS-2 spacecraft, scientists at the German aerospace centre (DLR) report that levels of sulphur dioxide from the eruptions on Sunday and Monday are at least 20 times higher than normal.


A plume of smoke and ash from Sicily’s Mount Etna is seen in this image acquired 28 October 2002 by the Medium Resolution Imaging Spectrometer (MERIS) instrument onboard ESA’s Envisat Satellite
Credits: ESA



As detected by ESA satellite sensors, the recent eruptions of the Mount Etna volcano in Sicily are throwing huge amounts of ash and trace gases into the atmosphere. Sensors onboard three different ESA spacecraft have acquired imagery of the eruptions that shed new light on the event and its impact on the Earth’s environment.
Working with data from the Global Ozone Monitoring Experiment (GOME) sensor onboard ESA’s ERS-2 spacecraft, scientists at the German aerospace centre (DLR) report that levels of sulphur dioxide from the eruptions on Sunday and Monday are at least 20 times higher than normal.

This latest activity from Mt. Etna, the second in a little over a year, marks the beginning of another period of activity of Europe’s largest volcano, says Werner Thomas, an atmospheric scientist with DLR’s Remote Sensing Technology Institute.



“As in July and August 2001 eruptions of Etna, dense ash clouds and gaseous emissions were again detected by several space-borne sensors,” he said.

The normal background level of sulphur dioxide is typically below 0.5 Dobson Units (DU), a measure of atmospheric gas concentrations from ground level to the top of the atmosphere, about 70 km in altitude.

"In the plume, we measured atmospheric content of sulphur dioxide of about 10 DU, at least 20 times higher than normal," Thomas said.

Sulphur dioxide in the troposphere, the lowest part of the atmosphere where most weather changes occur, is known to be responsible for the so-called "acid rain" phenomenon. Stratospheric sulphur dioxide, from about 11 km to 50 km above the Earth’s surface, causes the formation of sulphate aerosol particles that may have a serious impact on the global climate. Mt. Etna is one of the most prominent sources of natural sulphur dioxide worldwide.

The ERS’ GOME instrument is dedicated for remote sensing of the atmosphere and can detect a variety of atmospheric trace gases, including sulphur dioxide. The first GOME data after the beginning of the eruptions was recorded and analysed on 29 October around 10:15 UTC. As seen in the accompanying chart, enhanced levels of sulphur dioxide are evident in the southeast of Sicily, indicating that the tropospheric sulphur dioxide was carried away from the volcano by the winds in that direction.

The Italian government declared a state of emergency yesterday in Sicily in the wake a series of earthquakes, measuring between 3.6 and 4.3 on the Richter scale, that forced the evacuation of approximately 1 000 homes, according to reports from BBC and Italian newspapers. Meanwhile, three streams of lava from the eruption flowed down the south, northeast and northwest slopes of the mountains, media reports stated.

Europe’s highest and most active volcano (3370 m) hurled lava and ash from several craters into the sky with a speed between 350 and 450 metres per second, exceeding the speed of sound. According to data from volcanologists, the lava and ash were ejected from the main crater and from at least nine new craters that developed in the mountain between 2300 to 2700 metres in altitude.

As seen in the image acquired Monday by the Medium Resolution Imaging Spectrometer (MERIS) onboard ESA’s Envisat satellite, the eruptions spewed significant amounts of ash, along with sulphur dioxide, into the atmosphere The plume from the volcano can be seen in the image stretching south and west from Sicily to the north African coast. The larger volcanic ash particles are expected to settle out in a short period of time, but the sulphuric acid aerosols produced by the sulphur dioxide will persist for several years.

These aerosols will impact the Earth’s energy budget, both regionally and on a global scale. Aerosols containing black graphite and carbon particles are dark, thus absorbing sunlight. As these atmospheric particles reduce the amount of sunlight reaching the planet’s surface, they increase the amount of solar energy absorbed in the atmosphere, thus simultaneously cooling the surface and warming the atmosphere.

The capability of the MERIS instrument to observe the spatial distribution of these aerosol plumes can be exploited to measure the amounts of airborne particles and to examine the role of these aerosols as cloud condensation nuclei and their impact on the hydrologic cycle through changes in cloud cover, cloud properties and precipitation.

Today’s images from Proba

Just 60x60x80 cm and weighing only 94 kg, ESA’s Project for On-Board Autonomy satellite, better known as Proba, is one of the most advanced small satellites ever flown in space.

Since its launch last year, Proba’s high-performing computer system and technologically advanced instruments have enabled it to demonstrate and evaluate onboard operational autonomy, new spacecraft technology both hardware and software, and to test Earth observation and space environment instruments in space.

The imagery captured today by Proba demonstrate the capabilities of CHRIS, the Compact High Resolution Imaging Spectrometer, which is providing important information on the Earth and its environment, and will be a valuable tool in remote sensing during the extended mission.

The instrument acquired the accompanying Etna images in four standard bands, although the instrument is capable of image acquisition in up to 19 different bands.

Erica Rolfe | ESA

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>