Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computer model suggests future crop loss due to potential increase in extreme rain events


An increased frequency of extreme precipitation events has been observed over the last 100 years in the United States. Global climate models project that similar trends may continue and even strengthen over the coming decades, due to climate change. Now, a study using computer climate and crop model simulations predicts that U.S. agricultural production losses due to excess rainfall may double in the next 30 years, resulting in an estimated $3 billion per year in damages.

Cynthia Rosenzweig and Francesco Tubiello, researchers at the NASA Goddard Institute for Space Studies and Columbia University, New York, and the other authors of this study, found that current assessments of the impacts of climate change on agriculture have not accounted for the negative impacts on crops from increased precipitation and floods. In an effort to close this information gap, the researchers modified an existing crop computer model to simulate the extent to which excess soil moisture from heavy rain might damage crop plants.

"The impacts of excess soil moisture due to increased precipitation need to be taken into account because of associated crop losses and potential financial damages," Rosenzweig said.

The researchers argue that while droughts receive the most attention when it comes to assessing the impacts of climate change on agriculture, excess precipitation should also be a major concern. The 1993 U.S. Midwest floods, for example, caused about $6 to 8 billion in damages to farmers, accounting for roughly half of the total overall losses from the flood, according to the Federal Emergency Management Agency. Overall precipitation and extreme rain events are projected to increase in the future because of stronger water cycle dynamics associated with global warming.

Global climate model simulations used in the study project increases in total precipitation and in the number of extreme precipitation events in the Corn Belt and on average for the continental United States. Over the Corn Belt states, the average number of extreme precipitation events was 30 percent above present levels in the 2030s, and 65 percent higher in the 2090s. The same climate projections were used for a 2001 U.S. national assessment report on potential consequences of climate change.

The researchers also modified an existing crop model, called CERES-Maize, in order to simulate the effects of excess soil moisture from heavy precipitation on corn crops. The model calculates plant development, growth and final yield based on weather, crop genetic traits and management practices. The researchers modified CERES-Maize by adding in a function that limited the simulated plant’s ability to grow roots after three consecutive days of soil saturation. The model simulated corn growth in nine U.S. Corn Belt states, including Kansas, Nebraska, Illinois, Indiana, Iowa, North and South Dakota, Ohio and Wisconsin, which represent 85 percent of total U.S. corn production.

The modified model showed that the probability of crop damage due to water-logged soils could be even greater than the projected increases in heavy precipitation - corresponding to 90 percent more damage in the 2030s, and 150 percent more damage by the 2090s, compared to present conditions.

To relate the climate and crop model results to economic losses, Rosenzweig and her colleagues used USDA economic data to estimate that damages to U.S. corn production due to excess soil moisture currently amount to about $600 million per year.

The researchers then estimated that potential future damages to major U.S. crops due to excess soil moisture could lead to total losses of up to $3 billion per year by the 2030s, on average.

The study appears in the current issue of Global Environmental Change. The research was conducted at the Climate Impacts Group of the NASA Goddard Institute for Space Studies at Columbia University and was supported by Environmental Defense and the Environmental Protection Agency.

Krishna Ramanujan | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>