Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Acidic surfaces on atmospheric aerosols greatly increase secondary aerosol formation

25.10.2002


Atmospheric particles that become acidic through exposure to such pollutants as sulfuric acid can lead to vast increases in the formation of secondary organic aerosols, a new study indicates. Such aerosols are major components of the unsightly haze that hangs over cities and oil refineries and even affects otherwise pristine U.S. national parks.



A report on the research appears in Friday’s (Oct. 25) issue of the journal Science. Authors, all at the University of North Carolina at Chapel Hill, are Dr. Myoseon Jang, research associate; doctoral students Nadine M. Czoschke and Sangdon Lee; and Richard M. Kamens, professor of environmental sciences and engineering at the UNC School of Public Health.

"We think this exciting work is potentially very important and so do other scientists we have discussed it with across the United States," said Kamens. "What Dr. Jang has done in our laboratory was to discover an acid-catalyzed process that brings about secondary organic aerosol formation. "She also has found that this under-appreciated reaction may generate five to 10 times more aerosol in the atmosphere than we previously thought," he said. "It appears to explain a number of different kinds of phenomena that lead to aerosol formation."


Jang’s "ground-breaking" new research involves testing aerosols in reaction chambers and large outdoor smog chambers and determining what happens to them under varying experimental conditions, Kamens said.

In the new work, scientists introduced fine inert particles known as seed aerosols into Teflon film reaction chambers, he said. Into some chambers they injected identical particles coated with 2 percent to 5 percent sulfuric acid, which is about the same level found on tiny bits of floating diesel soot.

"What they did then was to introduce into the gas phase atmosphere of the chambers aldehydes and alcohols," Kamens said. "Dr. Jang found that when the aldehydes and alcohols were present, there was a huge increase in the amount of aerosol that formed."

Studies with a variety of different aldehydes, which are formed in the atmosphere by oxidation of emitted hydrocarbons, revealed that some aldehydes derived from aromatic compounds were far more reactive in producing aerosols than scientists believed. Aromatic compounds come largely from automobile and other exhausts, while trees generate massive amounts of terpenoid hydrocarbons, which also form aldehydes and particles in the atmosphere subject to similar acid-catalyzed aerosol-producing reactions.

Jang’s discovery appears to fill an important hole in scientists’ understanding of atmospheric chemistry, Kamens said. Her data also mirrors natural data collected by a Rutgers University team in the Appalachians’ Smoky Mountains under the direction of Dr. Barbara Turpin.

"People from NOAA -- the National Oceanic and Atmospheric Administration -- got very excited about this work at a recent aerosol research meeting in Charlotte," he said. "That was because it seems to explain atmospheric reactions going on over Houston, where refineries produce very large emissions of volatile organic compounds and also sulfur dioxide.

"Using Dr. Jang’s theory and findings, they immediately thought that what has been happening there was that sulfur dioxide was being oxidized as sulfuric acid. Then the sulfuric acid was acid-catalyzing organic reactions in the plume over the petroleum refineries to form huge, huge bursts of particles that nobody really understood before."

The UNC experiments should lead to new insights into global warming, photochemical reactions and weather and, possibly, some useful manipulation of them, Kamens said. They also could have important implications for pollution control and health.

"Environmental Protection Agency researchers also have said they are very interested in this work, and we’re going to share our information with them soon," he said.

Mathematical models the team is creating will help them predict what would happen in the atmosphere in response to lowering volatile organic emissions and other pollutants from cars, refineries and other sources, the scientist said.


The National Science Foundation’s Atmospheric Chemistry Division and the EPA’s STAR (Science to Achieve Results) program supported the exploratory studies with grants to Kamens’ research group.

Note: Kamens and Lee can be reached at (919) 966-5452 and 966-3861, respectively, or kamens@unc.edu and mjang@email.unc.edu

By DAVID WILLIAMSON
UNC News Services

David Williamson | EurekAlert!

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>