Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Acidic surfaces on atmospheric aerosols greatly increase secondary aerosol formation

25.10.2002


Atmospheric particles that become acidic through exposure to such pollutants as sulfuric acid can lead to vast increases in the formation of secondary organic aerosols, a new study indicates. Such aerosols are major components of the unsightly haze that hangs over cities and oil refineries and even affects otherwise pristine U.S. national parks.



A report on the research appears in Friday’s (Oct. 25) issue of the journal Science. Authors, all at the University of North Carolina at Chapel Hill, are Dr. Myoseon Jang, research associate; doctoral students Nadine M. Czoschke and Sangdon Lee; and Richard M. Kamens, professor of environmental sciences and engineering at the UNC School of Public Health.

"We think this exciting work is potentially very important and so do other scientists we have discussed it with across the United States," said Kamens. "What Dr. Jang has done in our laboratory was to discover an acid-catalyzed process that brings about secondary organic aerosol formation. "She also has found that this under-appreciated reaction may generate five to 10 times more aerosol in the atmosphere than we previously thought," he said. "It appears to explain a number of different kinds of phenomena that lead to aerosol formation."


Jang’s "ground-breaking" new research involves testing aerosols in reaction chambers and large outdoor smog chambers and determining what happens to them under varying experimental conditions, Kamens said.

In the new work, scientists introduced fine inert particles known as seed aerosols into Teflon film reaction chambers, he said. Into some chambers they injected identical particles coated with 2 percent to 5 percent sulfuric acid, which is about the same level found on tiny bits of floating diesel soot.

"What they did then was to introduce into the gas phase atmosphere of the chambers aldehydes and alcohols," Kamens said. "Dr. Jang found that when the aldehydes and alcohols were present, there was a huge increase in the amount of aerosol that formed."

Studies with a variety of different aldehydes, which are formed in the atmosphere by oxidation of emitted hydrocarbons, revealed that some aldehydes derived from aromatic compounds were far more reactive in producing aerosols than scientists believed. Aromatic compounds come largely from automobile and other exhausts, while trees generate massive amounts of terpenoid hydrocarbons, which also form aldehydes and particles in the atmosphere subject to similar acid-catalyzed aerosol-producing reactions.

Jang’s discovery appears to fill an important hole in scientists’ understanding of atmospheric chemistry, Kamens said. Her data also mirrors natural data collected by a Rutgers University team in the Appalachians’ Smoky Mountains under the direction of Dr. Barbara Turpin.

"People from NOAA -- the National Oceanic and Atmospheric Administration -- got very excited about this work at a recent aerosol research meeting in Charlotte," he said. "That was because it seems to explain atmospheric reactions going on over Houston, where refineries produce very large emissions of volatile organic compounds and also sulfur dioxide.

"Using Dr. Jang’s theory and findings, they immediately thought that what has been happening there was that sulfur dioxide was being oxidized as sulfuric acid. Then the sulfuric acid was acid-catalyzing organic reactions in the plume over the petroleum refineries to form huge, huge bursts of particles that nobody really understood before."

The UNC experiments should lead to new insights into global warming, photochemical reactions and weather and, possibly, some useful manipulation of them, Kamens said. They also could have important implications for pollution control and health.

"Environmental Protection Agency researchers also have said they are very interested in this work, and we’re going to share our information with them soon," he said.

Mathematical models the team is creating will help them predict what would happen in the atmosphere in response to lowering volatile organic emissions and other pollutants from cars, refineries and other sources, the scientist said.


The National Science Foundation’s Atmospheric Chemistry Division and the EPA’s STAR (Science to Achieve Results) program supported the exploratory studies with grants to Kamens’ research group.

Note: Kamens and Lee can be reached at (919) 966-5452 and 966-3861, respectively, or kamens@unc.edu and mjang@email.unc.edu

By DAVID WILLIAMSON
UNC News Services

David Williamson | EurekAlert!

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>