Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Acidic surfaces on atmospheric aerosols greatly increase secondary aerosol formation

25.10.2002


Atmospheric particles that become acidic through exposure to such pollutants as sulfuric acid can lead to vast increases in the formation of secondary organic aerosols, a new study indicates. Such aerosols are major components of the unsightly haze that hangs over cities and oil refineries and even affects otherwise pristine U.S. national parks.



A report on the research appears in Friday’s (Oct. 25) issue of the journal Science. Authors, all at the University of North Carolina at Chapel Hill, are Dr. Myoseon Jang, research associate; doctoral students Nadine M. Czoschke and Sangdon Lee; and Richard M. Kamens, professor of environmental sciences and engineering at the UNC School of Public Health.

"We think this exciting work is potentially very important and so do other scientists we have discussed it with across the United States," said Kamens. "What Dr. Jang has done in our laboratory was to discover an acid-catalyzed process that brings about secondary organic aerosol formation. "She also has found that this under-appreciated reaction may generate five to 10 times more aerosol in the atmosphere than we previously thought," he said. "It appears to explain a number of different kinds of phenomena that lead to aerosol formation."


Jang’s "ground-breaking" new research involves testing aerosols in reaction chambers and large outdoor smog chambers and determining what happens to them under varying experimental conditions, Kamens said.

In the new work, scientists introduced fine inert particles known as seed aerosols into Teflon film reaction chambers, he said. Into some chambers they injected identical particles coated with 2 percent to 5 percent sulfuric acid, which is about the same level found on tiny bits of floating diesel soot.

"What they did then was to introduce into the gas phase atmosphere of the chambers aldehydes and alcohols," Kamens said. "Dr. Jang found that when the aldehydes and alcohols were present, there was a huge increase in the amount of aerosol that formed."

Studies with a variety of different aldehydes, which are formed in the atmosphere by oxidation of emitted hydrocarbons, revealed that some aldehydes derived from aromatic compounds were far more reactive in producing aerosols than scientists believed. Aromatic compounds come largely from automobile and other exhausts, while trees generate massive amounts of terpenoid hydrocarbons, which also form aldehydes and particles in the atmosphere subject to similar acid-catalyzed aerosol-producing reactions.

Jang’s discovery appears to fill an important hole in scientists’ understanding of atmospheric chemistry, Kamens said. Her data also mirrors natural data collected by a Rutgers University team in the Appalachians’ Smoky Mountains under the direction of Dr. Barbara Turpin.

"People from NOAA -- the National Oceanic and Atmospheric Administration -- got very excited about this work at a recent aerosol research meeting in Charlotte," he said. "That was because it seems to explain atmospheric reactions going on over Houston, where refineries produce very large emissions of volatile organic compounds and also sulfur dioxide.

"Using Dr. Jang’s theory and findings, they immediately thought that what has been happening there was that sulfur dioxide was being oxidized as sulfuric acid. Then the sulfuric acid was acid-catalyzing organic reactions in the plume over the petroleum refineries to form huge, huge bursts of particles that nobody really understood before."

The UNC experiments should lead to new insights into global warming, photochemical reactions and weather and, possibly, some useful manipulation of them, Kamens said. They also could have important implications for pollution control and health.

"Environmental Protection Agency researchers also have said they are very interested in this work, and we’re going to share our information with them soon," he said.

Mathematical models the team is creating will help them predict what would happen in the atmosphere in response to lowering volatile organic emissions and other pollutants from cars, refineries and other sources, the scientist said.


The National Science Foundation’s Atmospheric Chemistry Division and the EPA’s STAR (Science to Achieve Results) program supported the exploratory studies with grants to Kamens’ research group.

Note: Kamens and Lee can be reached at (919) 966-5452 and 966-3861, respectively, or kamens@unc.edu and mjang@email.unc.edu

By DAVID WILLIAMSON
UNC News Services

David Williamson | EurekAlert!

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>