Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land subsidence measurements may improve groundwater management

25.10.2002


Geological sciences researchers at Virginia Tech are using GPS antennas to measure aquifer use and storage capacity. At the Geological Society of America’s 114th annual meeting in Denver, Oct. 27-30, master’s degree student Sandra Warner will make the case for the broader coverage of such tools.



Warner and Virginia Tech geological sciences professor Thomas Burbey are conducting a large-scale aquifer test on a new municipal well in the Virgin River Valley near Mesquite, Nev. In addition to the monitoring wells that traditionally surround a pump site, the researchers are using 10 GPS antenna as a new way to measure land subsidence. They also hope to incorporate data from a remote-sensing radar satellite that measures land change.

Traditionally, how much water is in an aquifer is determined by how much the water sinks vertically as it is used. Warner is determining how capacity changes horizontally as well as vertically. As aquifers are emptied, there is shifting to fill the areas emptied of water. The newest GPS antennas will make it possible to measure land subsidence with millimeter accuracy.


The researchers will be conducting a 30-day test at the new site. The well is a unique opportunity in that it has never been pumped. "An aquifer usually behaves differently the first time it is stressed," says Warner. "When it is recharged, it won’t hold the same amount of water because of initial compaction. Knowing the characteristics of the aquifer will help managers maintain its elastic range, that is, prevent it from being pumped to the point it cannot rebound."

The Mesquite well is near Las Vegas so the expectation is it will be drawn upon during the summer and have to recharge during the winter.

"If we know how much water is there, we can determine how much we can take out without land subsidence or using up resources," Warner says. "Also, GPS antennas are cheaper and more accurate than sensor wells. One antenna covers more area than the wells."

The paper, "Using GPS to quantify three dimensional aquifer deformation and storage in the Virgin River Valley, Nevada," by Warner and Burbey will present numerical simulations based on compaction over time. The presentation will be at 4:28 p.m. on Tuesday, Oct. 28, in room A101/103 at the Colorado Convention Center.

Warner, who is from Manchester, Md., did her undergraduate work at Pennsylvania State University. Burbey worked for the U.S. Geological Survey in Nevada and did his Ph.D. research in that area before coming to Virginia Tech.


The research is funded by the National Science Foundation.

Contact: Sandra McCarthy Warner, smwarner@vt.edu, 540-231-8828

PR Contact: Susan Trulove, 540-231-5646, strulove@vt.edu

Sandra McCarthy Warner’s major professor is Thomas Burbey, 540-231-6696, tjburbey@vt.edu.

Sandra McCarthy Warner | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>