Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Land subsidence measurements may improve groundwater management


Geological sciences researchers at Virginia Tech are using GPS antennas to measure aquifer use and storage capacity. At the Geological Society of America’s 114th annual meeting in Denver, Oct. 27-30, master’s degree student Sandra Warner will make the case for the broader coverage of such tools.

Warner and Virginia Tech geological sciences professor Thomas Burbey are conducting a large-scale aquifer test on a new municipal well in the Virgin River Valley near Mesquite, Nev. In addition to the monitoring wells that traditionally surround a pump site, the researchers are using 10 GPS antenna as a new way to measure land subsidence. They also hope to incorporate data from a remote-sensing radar satellite that measures land change.

Traditionally, how much water is in an aquifer is determined by how much the water sinks vertically as it is used. Warner is determining how capacity changes horizontally as well as vertically. As aquifers are emptied, there is shifting to fill the areas emptied of water. The newest GPS antennas will make it possible to measure land subsidence with millimeter accuracy.

The researchers will be conducting a 30-day test at the new site. The well is a unique opportunity in that it has never been pumped. "An aquifer usually behaves differently the first time it is stressed," says Warner. "When it is recharged, it won’t hold the same amount of water because of initial compaction. Knowing the characteristics of the aquifer will help managers maintain its elastic range, that is, prevent it from being pumped to the point it cannot rebound."

The Mesquite well is near Las Vegas so the expectation is it will be drawn upon during the summer and have to recharge during the winter.

"If we know how much water is there, we can determine how much we can take out without land subsidence or using up resources," Warner says. "Also, GPS antennas are cheaper and more accurate than sensor wells. One antenna covers more area than the wells."

The paper, "Using GPS to quantify three dimensional aquifer deformation and storage in the Virgin River Valley, Nevada," by Warner and Burbey will present numerical simulations based on compaction over time. The presentation will be at 4:28 p.m. on Tuesday, Oct. 28, in room A101/103 at the Colorado Convention Center.

Warner, who is from Manchester, Md., did her undergraduate work at Pennsylvania State University. Burbey worked for the U.S. Geological Survey in Nevada and did his Ph.D. research in that area before coming to Virginia Tech.

The research is funded by the National Science Foundation.

Contact: Sandra McCarthy Warner,, 540-231-8828

PR Contact: Susan Trulove, 540-231-5646,

Sandra McCarthy Warner’s major professor is Thomas Burbey, 540-231-6696,

Sandra McCarthy Warner | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>