Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great Progress Made by Seismologists in Identifying Violations of Nuclear Test Ban Treaty

23.10.2002


Advances in detection devices and methods of analysis have allowed seismologists to identify virtually all events that might be nuclear explosions of possible military significance under the Comprehensive Test Ban Treaty (CTBT), according to Prof. Lynn R. Sykes of Columbia University’s Lamont-Doherty Earth Observatory. Writing in the 29 October issue of Eos, published by the American Geophysical Union, Sykes analyzes 72 questionable events since 1960.



Verification was a major issue in the U.S. Senate debate in 1999, in which American ratification of the treaty was defeated. Since 1995, the International CTBT Organization has detected many small seismic events and has determined that many were earthquakes or otherwise identifiable. Under the treaty, however, the international organization is not charged with identifying all seismic events and is, in fact, not permitted to declare an event a nuclear explosion. Unresolved cases and possible nuclear events are referred to national CTBT agencies, whose work is usually classified.

Therefore, says Sykes, we do not always know how well the difficult cases are resolved. Only 72 events have been flagged in the literature or by the media as questionable or difficult to identify, a small fraction of all events recorded over the past 42 years, demonstrating the great progress made in verification, says Sykes. By studying technical characteristics of the seismic signals, nearly all of the 72 events have been identified as nuclear explosions, chemical explosions, earthquakes, or mine collapses, he writes.


Thirty years ago, problem events registered seismic magnitudes (mb) of 4.3 to 5.6, whereas today, most attention is focused on the mb 2.0 to 3.5 level. Since the magnitude scale is logarithmic, this represents an improvement factor of 300 in the size of signals that can be identified. It means that nuclear explosions 1,000 times smaller in their energy release can now be identified, says Sykes.

Since 1990, all of the problem events greater than mb 2.5 have received special study and have been identified. There is no evidence, says Sykes, that any countries have exploded nuclear devices since the CTBT was opened for signature in 1996, aside from India and Pakistan (which have not signed). Under the International Monitoring System, which began in 1995, seismic monitors have been placed close to, or in, countries that possess nuclear weapons, and the shorter the distance high frequency seismic signals have to travel, the better the identification of their source, Sykes writes.

Indian nuclear explosions on May 11, 1998, and Pakistani ones later that month were widely recorded and quickly identified. Sykes says the Indian claim of two tests with a combined yield of 0.6 kilotons on May 13, 1998, is surely exaggerated, as they created no detectable seismic signal. Similarly, media reports in 2001 of an Iraqi nuclear explosion in 1989 appear to be false, Sykes writes, as no seismic signal was produced.

Regarding suspected Russian tests on September 8 and 23, 1999, at Novaya Zemlya, Sykes concludes that, if they occurred at all, they were very tiny, that is, 0.001 to 0.02 kilotons. They may have been so-called "sub-critical" tests that release no nuclear energy, which are permitted by the treaty. Russia, China, and the United States have each conducted sub-critical tests since the treaty was signed in 1996. Sykes notes that to have military significance, tests must produce yields of at least five to 10 kilotons.

As for the future of verification, Sykes says that only on-site inspections can resolve any doubt in suspected events where the nuclear yield is zero, and this becomes possible once the CTBT enters into force. Short of that, occasional problem events may occur at the limits of detection. These will become fewer, as investigations of previous questionable events are published and the science of verification advances further, he concludes.

Contact: Harvey Leifert
(202) 777-7507
hleifert@agu.org

Harvey Leifert | AGU

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>