Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great Progress Made by Seismologists in Identifying Violations of Nuclear Test Ban Treaty

23.10.2002


Advances in detection devices and methods of analysis have allowed seismologists to identify virtually all events that might be nuclear explosions of possible military significance under the Comprehensive Test Ban Treaty (CTBT), according to Prof. Lynn R. Sykes of Columbia University’s Lamont-Doherty Earth Observatory. Writing in the 29 October issue of Eos, published by the American Geophysical Union, Sykes analyzes 72 questionable events since 1960.



Verification was a major issue in the U.S. Senate debate in 1999, in which American ratification of the treaty was defeated. Since 1995, the International CTBT Organization has detected many small seismic events and has determined that many were earthquakes or otherwise identifiable. Under the treaty, however, the international organization is not charged with identifying all seismic events and is, in fact, not permitted to declare an event a nuclear explosion. Unresolved cases and possible nuclear events are referred to national CTBT agencies, whose work is usually classified.

Therefore, says Sykes, we do not always know how well the difficult cases are resolved. Only 72 events have been flagged in the literature or by the media as questionable or difficult to identify, a small fraction of all events recorded over the past 42 years, demonstrating the great progress made in verification, says Sykes. By studying technical characteristics of the seismic signals, nearly all of the 72 events have been identified as nuclear explosions, chemical explosions, earthquakes, or mine collapses, he writes.


Thirty years ago, problem events registered seismic magnitudes (mb) of 4.3 to 5.6, whereas today, most attention is focused on the mb 2.0 to 3.5 level. Since the magnitude scale is logarithmic, this represents an improvement factor of 300 in the size of signals that can be identified. It means that nuclear explosions 1,000 times smaller in their energy release can now be identified, says Sykes.

Since 1990, all of the problem events greater than mb 2.5 have received special study and have been identified. There is no evidence, says Sykes, that any countries have exploded nuclear devices since the CTBT was opened for signature in 1996, aside from India and Pakistan (which have not signed). Under the International Monitoring System, which began in 1995, seismic monitors have been placed close to, or in, countries that possess nuclear weapons, and the shorter the distance high frequency seismic signals have to travel, the better the identification of their source, Sykes writes.

Indian nuclear explosions on May 11, 1998, and Pakistani ones later that month were widely recorded and quickly identified. Sykes says the Indian claim of two tests with a combined yield of 0.6 kilotons on May 13, 1998, is surely exaggerated, as they created no detectable seismic signal. Similarly, media reports in 2001 of an Iraqi nuclear explosion in 1989 appear to be false, Sykes writes, as no seismic signal was produced.

Regarding suspected Russian tests on September 8 and 23, 1999, at Novaya Zemlya, Sykes concludes that, if they occurred at all, they were very tiny, that is, 0.001 to 0.02 kilotons. They may have been so-called "sub-critical" tests that release no nuclear energy, which are permitted by the treaty. Russia, China, and the United States have each conducted sub-critical tests since the treaty was signed in 1996. Sykes notes that to have military significance, tests must produce yields of at least five to 10 kilotons.

As for the future of verification, Sykes says that only on-site inspections can resolve any doubt in suspected events where the nuclear yield is zero, and this becomes possible once the CTBT enters into force. Short of that, occasional problem events may occur at the limits of detection. These will become fewer, as investigations of previous questionable events are published and the science of verification advances further, he concludes.

Contact: Harvey Leifert
(202) 777-7507
hleifert@agu.org

Harvey Leifert | AGU

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>