Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New map shows human ’footprint’ covers most of the Earth

23.10.2002


But scientists say human effects can be a positive, not negative, factor for life on earth



Human beings now directly influence more than three quarters of the earth’s landmass, according to a state-of-the-art map of the world produced by a team of scientists from the New York-based Wildlife Conservation Society (WCS) and Columbia University’s Center for International Earth Science Information Network (CIESIN). Published in the latest issue of the scientific journal BioScience, the map should serve as a wake-up call that humans are stewards of the natural world, whether we like it or not – something that should be viewed as an opportunity, the authors say.

The map adds together influences from population density, access from roads and waterways, electrical power infrastructure, and land transformation such as urbanization and agricultural use. It reveals that 83 percent of the land’s surface is under human influence, while a staggering 98 percent of the area where it is possible to grow rice, wheat or maize is directly influenced by human beings. At the same time, wide swaths of land still remain wild, including: the northern forests of Alaska, Canada and Russia; the high plateaus of Tibet and Mongolia; and much of the Amazon River Basin.


According to WCS and CIESIN, wild areas can still be found in all the ecosystems on the land’s surface, though some on a much smaller scale. Called the "last of the wild," the authors look at these less-influenced areas as opportunities for conservation of wild places all over the world.

"The map of the human footprint is a clear-eyed view of our influence on the Earth. It provides a way to find opportunities to save wildlife and wild lands in pristine areas, and also to understand how conservation in wilderness, countryside, suburbs, and cities are all related," said the paper’s lead author Dr. Eric Sanderson, a landscape ecologist with WCS. "The map should be looked at as a blueprint for individuals, institutions and governments to understand our current influence on the planet and figure out ways to lessen the negative impacts, while enhancing the positive ways that people interact with the environment."

The authors of the study also gave numerical scores to various areas around the world; the lower the number, the lesser the degree of human influence. Many of the world’s largest cities, including New York, Beijing, Calcutta, etc. received the highest scores. But the authors of the study say that even among areas under heavier human influence, there are still opportunities for wildlife, pointing to examples like the progress made in restoring the Hudson River, and in India, where tigers share their landscape with one billion people.

"This map can be used to set specific targets for action," according to data specialist Marc Levy of CIESIN. "What can’t be measured can’t be managed--with this map we have an important management tool, a basis for scientific measurement of anthropogenic influences on nature."

"The two lessons of the human footprint are this: we need to conserve the last of the wild, because they are places where all the parts of nature are more likely to remain, and where conflicts with human infrastructure are least; and we need to transform the human footprint, so nature can still be nurtured everywhere, including in more heavily influenced areas. We can do both and nature is often resilient, if given half a chance," said Sanderson.

This study also vividly illustrates the application of geographic information systems (GIS) technology as a way of integrating diverse geographic data to reveal new patterns in a persuasive way. This work was only possible because of increased access to global datasets on roads, land use, and human population density in recent years.

This work was supported by grants from the Prospect Hill Foundation, the Center for Environmental Research and Conservation (CERC) at Columbia University, and in-kind support from the ESRI Conservation Program.

Stephen Sautner | EurekAlert!
Further information:
http://www.wcs.org/humanfootprint
http://www.ciesin.columbia.edu/wild_areas
http://www.wcs.org/

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>