Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New map shows human ’footprint’ covers most of the Earth


But scientists say human effects can be a positive, not negative, factor for life on earth

Human beings now directly influence more than three quarters of the earth’s landmass, according to a state-of-the-art map of the world produced by a team of scientists from the New York-based Wildlife Conservation Society (WCS) and Columbia University’s Center for International Earth Science Information Network (CIESIN). Published in the latest issue of the scientific journal BioScience, the map should serve as a wake-up call that humans are stewards of the natural world, whether we like it or not – something that should be viewed as an opportunity, the authors say.

The map adds together influences from population density, access from roads and waterways, electrical power infrastructure, and land transformation such as urbanization and agricultural use. It reveals that 83 percent of the land’s surface is under human influence, while a staggering 98 percent of the area where it is possible to grow rice, wheat or maize is directly influenced by human beings. At the same time, wide swaths of land still remain wild, including: the northern forests of Alaska, Canada and Russia; the high plateaus of Tibet and Mongolia; and much of the Amazon River Basin.

According to WCS and CIESIN, wild areas can still be found in all the ecosystems on the land’s surface, though some on a much smaller scale. Called the "last of the wild," the authors look at these less-influenced areas as opportunities for conservation of wild places all over the world.

"The map of the human footprint is a clear-eyed view of our influence on the Earth. It provides a way to find opportunities to save wildlife and wild lands in pristine areas, and also to understand how conservation in wilderness, countryside, suburbs, and cities are all related," said the paper’s lead author Dr. Eric Sanderson, a landscape ecologist with WCS. "The map should be looked at as a blueprint for individuals, institutions and governments to understand our current influence on the planet and figure out ways to lessen the negative impacts, while enhancing the positive ways that people interact with the environment."

The authors of the study also gave numerical scores to various areas around the world; the lower the number, the lesser the degree of human influence. Many of the world’s largest cities, including New York, Beijing, Calcutta, etc. received the highest scores. But the authors of the study say that even among areas under heavier human influence, there are still opportunities for wildlife, pointing to examples like the progress made in restoring the Hudson River, and in India, where tigers share their landscape with one billion people.

"This map can be used to set specific targets for action," according to data specialist Marc Levy of CIESIN. "What can’t be measured can’t be managed--with this map we have an important management tool, a basis for scientific measurement of anthropogenic influences on nature."

"The two lessons of the human footprint are this: we need to conserve the last of the wild, because they are places where all the parts of nature are more likely to remain, and where conflicts with human infrastructure are least; and we need to transform the human footprint, so nature can still be nurtured everywhere, including in more heavily influenced areas. We can do both and nature is often resilient, if given half a chance," said Sanderson.

This study also vividly illustrates the application of geographic information systems (GIS) technology as a way of integrating diverse geographic data to reveal new patterns in a persuasive way. This work was only possible because of increased access to global datasets on roads, land use, and human population density in recent years.

This work was supported by grants from the Prospect Hill Foundation, the Center for Environmental Research and Conservation (CERC) at Columbia University, and in-kind support from the ESRI Conservation Program.

Stephen Sautner | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>